首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   560篇
  免费   48篇
  国内免费   55篇
  663篇
  2024年   4篇
  2023年   18篇
  2022年   31篇
  2021年   48篇
  2020年   38篇
  2019年   41篇
  2018年   58篇
  2017年   25篇
  2016年   28篇
  2015年   39篇
  2014年   53篇
  2013年   64篇
  2012年   43篇
  2011年   44篇
  2010年   23篇
  2009年   17篇
  2008年   21篇
  2007年   10篇
  2006年   7篇
  2005年   11篇
  2004年   6篇
  2003年   12篇
  2002年   7篇
  2001年   5篇
  2000年   2篇
  1998年   1篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有663条查询结果,搜索用时 15 毫秒
71.
Ionizing radiation causes not only targeted effects in cells that have been directly irradiated but also non-targeted effects in several cell generations after initial exposure. Recent studies suggest that radiation can enrich for a population of stem cells, derived from differentiated cells, through cellular reprogramming. Here, we elucidate the effect of irradiation on reprogramming, subjected to two different responses, using an induced pluripotent stem cell (iPSC) model. iPSCs were generated from non-irradiated cells, directly-irradiated cells, or cells subsequently generated after initial radiation exposure. We found that direct irradiation negatively affected iPSC induction in a dose-dependent manner. However, in the post-irradiated group, after five subsequent generations, cells became increasingly sensitive to the induction of reprogramming compared to that in non-irradiated cells as observed by an increased number of Tra1-81-stained colonies as well as enhanced alkaline phosphatase and Oct4 promoter activity. Comparative analysis, based on reducing the number of defined factors utilized for reprogramming, also revealed enhanced efficiency of iPSC generation in post-irradiated cells. Furthermore, the phenotypic acquisition of characteristics of pluripotent stem cells was observed in all resulting iPSC lines, as shown by morphology, the expression of pluripotent markers, DNA methylation patterns of pluripotency genes, a normal diploid karyotype, and teratoma formation. Overall, these results suggested that reprogramming capability might be differentially modulated by altered radiation-induced responses. Our findings provide that susceptibility to reprogramming in somatic cells might be improved by the delayed effects of non-targeted response, and contribute to a better understanding of the biological effects of radiation exposure.  相似文献   
72.
73.
74.
75.
Mouse embryonic stem cells (mESCs) display unique mechanical properties, including low cellular stiffness in contrast to differentiated cells, which are stiffer. We have previously shown that mESCs lacking the clathrin heavy chain (Cltc), an essential component for clathrin-mediated endocytosis (CME), display a loss of pluripotency and an enhanced expression of differentiation markers. However, it is not known whether physical properties such as cellular stiffness also change upon loss of Cltc, similar to what is seen in differentiated cells, and if so, how these altered properties specifically impact pluripotency. Using atomic force microscopy (AFM), we demonstrate that mESCs lacking Cltc display higher Young''s modulus, indicative of greater cellular stiffness, compared with WT mESCs. The increase in stiffness was accompanied by the presence of actin stress fibers and accumulation of the inactive, phosphorylated, actin-binding protein cofilin. Treatment of Cltc knockdown mESCs with actin polymerization inhibitors resulted in a decrease in the Young''s modulus to values similar to those obtained with WT mESCs. However, a rescue in the expression profile of pluripotency factors was not obtained. Additionally, whereas WT mouse embryonic fibroblasts could be reprogrammed to a state of pluripotency, this was inhibited in the absence of Cltc. This indicates that the presence of active CME is essential for the pluripotency of embryonic stem cells. Additionally, whereas physical properties may serve as a simple readout of the cellular state, they may not always faithfully recapitulate the underlying molecular fate.  相似文献   
76.
77.
We studied the capacity of the nuclei of rabbit fibroblasts taken from various developmental stages for reprogramming in the cytoplasm of mature aging enucleated oocytes and the development of the cloned embryos to the preimplantation stages. A negative correlation was found between the age of an animal donor of fibroblasts and the efficiency of the development of cloned embryos (r morula-blastocyst= –0.826, r blastocyst= –0.7139). A reliably decreased capacity for reprogramming of the nuclei of donor fibroblasts was shown upon the transition from prenatal development to postnatal development, as well as a trend to a decreased capacity of nuclei for reprogramming during aging. The aging of cells in the culture, at least until the tenth passage, did not affect the capacity of the nuclei of fetal fibroblasts for reprogramming and the development of cloned embryos.  相似文献   
78.
Metformin is an antidiabetic drug widely used for the treatment of type 2 diabetes. Growing evidence suggests that it may exert antitumor effects in vivo and in vitro. However, even with the promising potency on defeating cancer cells, the pre-clinical and epidemiological studies of metformin on various kinds of cancers are not satisfactory, and the reasons and underlying mechanisms remain unknown. Since cancer is a complex system, dependent on a promoting microenvironment, we hypothesize that the interactions between cancer cells and their neighborhood fibroblasts are essential for metformin resistance. To test this, we used a cell co-culture model closely mimicking the in vivo interactions and metabolic exchanges between normal stromal cells (NOFs) and oral squamous cancer cells (OSCC). Here we show that while metformin can significantly inhibit cell growth and induce apoptosis of OSCC cultured alone in a dose-dependent manner through activating p-AMPKT172 and modulating Bcl-2, Bax, and cleaved PARP. However, when OSCC are co-cultured with NOFs the metformin effects on OSCC cells are annihilated. NOFs are rescuing OSCC from metformin – induced apoptosis, at least partially, through inhibiting the activity of AMPK and PARP, maintaining mitochondrial membrane potential and increasing the oxidative stress. Our results indicate that metformin effects on oral cancer cells are modulated by the microenvironment and that this has to be taken into consideration in the context of developing a new combination of drugs for oral cancer treatment.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号