全文获取类型
收费全文 | 3577篇 |
免费 | 235篇 |
国内免费 | 155篇 |
专业分类
3967篇 |
出版年
2023年 | 59篇 |
2022年 | 92篇 |
2021年 | 128篇 |
2020年 | 80篇 |
2019年 | 114篇 |
2018年 | 122篇 |
2017年 | 104篇 |
2016年 | 121篇 |
2015年 | 135篇 |
2014年 | 183篇 |
2013年 | 272篇 |
2012年 | 132篇 |
2011年 | 122篇 |
2010年 | 153篇 |
2009年 | 164篇 |
2008年 | 151篇 |
2007年 | 182篇 |
2006年 | 146篇 |
2005年 | 144篇 |
2004年 | 129篇 |
2003年 | 108篇 |
2002年 | 101篇 |
2001年 | 74篇 |
2000年 | 71篇 |
1999年 | 53篇 |
1998年 | 73篇 |
1997年 | 50篇 |
1996年 | 66篇 |
1995年 | 73篇 |
1994年 | 63篇 |
1993年 | 41篇 |
1992年 | 38篇 |
1991年 | 36篇 |
1990年 | 38篇 |
1989年 | 32篇 |
1988年 | 39篇 |
1987年 | 42篇 |
1986年 | 38篇 |
1985年 | 31篇 |
1984年 | 42篇 |
1983年 | 29篇 |
1982年 | 32篇 |
1981年 | 14篇 |
1980年 | 13篇 |
1979年 | 11篇 |
1978年 | 5篇 |
1977年 | 6篇 |
1976年 | 4篇 |
1974年 | 3篇 |
1972年 | 3篇 |
排序方式: 共有3967条查询结果,搜索用时 15 毫秒
71.
Bieniossek C Schütz P Bumann M Limacher A Uson I Baumann U 《Journal of molecular biology》2006,360(2):457-465
The carboxy-terminal domain (CTD) of eukaryotic initiation factor 5 (eIF5) plays a central role in the formation of the multifactor complex (MFC), an important intermediate for the 43 S pre-initiation complex assembly. The IF5-CTD interacts directly with the translation initiation factors eIF1, eIF2-beta, and eIF3c, thus forming together with eIF2 bound Met-tRNA(i)(Met) the MFC. In this work we present the high resolution crystal structure of eIF5-CTD. This domain of the protein is exclusively composed out of alpha-helices and is homologous to the carboxy-terminal domain of eIF2B-epsilon (eIF2Bepsilon-CTD). The most striking difference in the two structures is an additional carboxy-terminal helix in eIF5. The binding sites of eIF2-beta, eIF3 and eIF1 were mapped onto the structure. eIF2-beta and eIF3 bind to non-overlapping patches of negative and positive electrostatic potential, respectively. 相似文献
72.
Rebecca Toroney Joshua A. Boyer Philip C. Bevilacqua 《Journal of molecular biology》2010,400(3):393-412
Protein kinase R (PKR) is an essential component of the innate immune response. In the presence of double-stranded RNA (dsRNA), PKR is autophosphorylated, which enables it to phosphorylate its substrate, eukaryotic initiation factor 2α, leading to translation cessation. Typical activators of PKR are long dsRNAs produced during viral infection, although certain other RNAs can also activate. A recent study indicated that full-length internal ribosome entry site (IRES), present in the 5′-untranslated region of hepatitis C virus (HCV) RNA, inhibits PKR, while another showed that it activates. We show here that both activation and inhibition by full-length IRES are possible. The HCV IRES has a complex secondary structure comprising four domains. While it has been demonstrated that domains III-IV activate PKR, we report here that domain II of the IRES also potently activates. Structure mapping and mutational analysis of domain II indicate that while the double-stranded regions of the RNA are important for activation, loop regions contribute as well. Structural comparison reveals that domain II has multiple, non-Watson-Crick features that mimic A-form dsRNA. The canonical and noncanonical features of domain II cumulate to a total of ∼ 33 unbranched base pairs, the minimum length of dsRNA required for PKR activation. These results provide further insight into the structural basis of PKR activation by a diverse array of RNA structural motifs that deviate from the long helical stretches found in traditional PKR activators. Activation of PKR by domain II of the HCV IRES has implications for the innate immune response when the other domains of the IRES may be inaccessible. We also study the ability of the HCV nonstructural protein 5A (NS5A) to bind various domains of the IRES and alter activation. A model is presented for how domain II of the IRES and NS5A operate to control host and viral translation during HCV infection. 相似文献
73.
74.
Owen CR Kumar R Zhang P McGrath BC Cavener DR Krause GS 《Journal of neurochemistry》2005,94(5):1235-1242
Reperfusion after global brain ischemia results initially in a widespread suppression of protein synthesis in neurons that is due to inhibition of translation initiation as a result of the phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 (eIF2). To address the role of the eIF2alpha kinase RNA-dependent protein kinase-like endoplasmic reticulum kinase (PERK) in the reperfused brain, transgenic mice with a targeted disruption of the Perk gene were subjected to 20 min of forebrain ischemia followed by 10 min of reperfusion. In wild-type mice, phosphorylated eIF2alpha was detected in the non-ischemic brain and its levels were elevated threefold after 10 min of reperfusion. Conversely, there was no phosphorylated eIF2alpha detected in the non-ischemic transgenic mice and there was no sizeable rise in phosphorylated eIF2alpha levels in the forebrain after ischemia and reperfusion. Moreover, there was a substantial rescue of protein translation in the reperfused transgenic mice. Neither group showed any change in total eIF2alpha, phosphorylated eukaryotic elongation factor 2 or total eukaryotic elongation factor 2 levels. These data demonstrate that PERK is responsible for the large increase in phosphorylated eIF2alpha and the suppression of translation early in reperfusion after transient global brain ischemia. 相似文献
75.
Translational control is a key step in gene expression regulation during apoptosis. To understand the mechanisms of mRNA translation of a pro-apoptotic gene, reaper (rpr), we adapted the tobramycin-aptamer technique described by Hartmuth et al. (Proc. Natl. Acad. Sci. USA 2002, 99, 16719-16724) for the analysis of proteins interacting with rpr 5' untranslated region (UTR). We assembled ribonucleoprotein complexes in vitro using translation extracts derived from Drosophila embryos and purified the RNA-protein complexes for mas spectrometry analysis. We identified the proteins bound to the 5' UTR of rpr. One of them, the La antigen, was validated by RNA-crosslinking experiments using recombinant protein and by the translation efficiency of reporter mRNAs in Drosophila cells after RNAinterference experiments. Our data provide evidence of the involvement of La antigen in the translation of rpr and set a protocol for purification of tagged-RNA-protein complexes from cytoplasmic extracts. 相似文献
76.
Fuss W 《Chirality》2009,21(2):299-304
Life did not emerge in a single step. In chemical evolution, the first formation of a self-replicating molecule was probably one of the most critical bottlenecks, which was overcome only with a very low probability. If only one such event was successful, present-day life originates from a single molecule. In this case, homochirality in DNA and RNA is explained almost without further assumptions. By contrast, the enantiomer excess, produced by the deterministic mechanisms suggested so far, is smaller than the statistical standard deviation, unless the postulated initial number of molecules is very--in some mechanisms unreasonably--large. A certain chiral nonuniformity of natural monosaccharides other than (deoxy)ribose supports the idea that homochirality originates not from such small molecules but from an early RNA-like oligomer. This nonuniformity seems also hard to explain by any deterministic mechanism. 相似文献
77.
78.
79.
Abstract.
- 1 Substantial intraspecific variation exists in Salix viminalis resistance to the gall midge Dasineura marginemtorquens. Earlier work has found this variation to have a large genetic component. Willow clones are stable in their resistances between midge generations and different nutrient levels in both field and laboratory culture.
- 2 This study reports the results of laboratory experiments on female oviposition choice and larval survival on potted plants from clones that are very different in resistance as determined in field studies.
- 3 In choice experiments using pairs of plants, the average female midge did not prefer susceptible willow clones over resistant ones for oviposition. In about one third of the replicates, midges actually laid more eggs on the resistant clone. Further work is necessary to examine the nature of variation among midges in discrimination of these plant types.
- 4 Resistance is manifested as great differences in larval survival. Six days after oviposition survival was 92% on susceptible plants but only 6% on resistant ones. Galls developed on all of the susceptible plants, while in 73% of the resistant plants galls were not even initiated.
- 5 The plant traits causing resistance are enigmatic. Larval behaviour suggests that resistant plants interfere with feeding behaviour. On resistant plants, most larvae wander for more than 24 h without initiating any galls before dying. On susceptible plants many first instar larvae begin feeding and initiate galls within this period.
80.
Mukesh Saxena Samarendra Singh Shamsu Zzaman Deepak Bastia 《The Journal of biological chemistry》2010,285(8):5695-5704
A typical plasmid replicon of Escherichia coli, such as ori γ of R6K, contains tandem iterons (iterated initiator protein binding sites), an AT-rich region that melts upon initiator-iteron interaction, two binding sites for the bacterial initiator protein DnaA, and a binding site for the DNA-bending protein IHF. R6K also contains two structurally atypical origins called α and β that are located on either side of γ and contain a single and a half-iteron, respectively. Individually, these sites do not bind to initiator protein π but access it by DNA looping-mediated interaction with the seven π-bound γ iterons. The π protein exists in 2 interconvertible forms: inert dimers and active monomers. Initiator dimers generally function as negative regulators of replication by promoting iteron pairing (“handcuffing”) between pairs of replicons that turn off both origins. Contrary to this existing paradigm, here we show that both the dimeric and the monomeric π are necessary for ori α-driven plasmid maintenance. Furthermore, efficient looping interaction between α and γ or between 2 γ iterons in vitro also required both forms of π. Why does α-γ iteron pairing promote α activation rather than repression? We show that a weak, transitory α-γ interaction at the iteron pairs was essential for α-driven plasmid maintenance. Swapping the α iteron with one of γ without changing the original sequence context that caused enhanced looping in vitro caused a significant inhibition of α-mediated plasmid maintenance. Therefore, the affinity of α iteron for π-bound γ and not the sequence context determined whether the origin was activated or repressed. 相似文献