首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2224篇
  免费   132篇
  国内免费   203篇
  2559篇
  2023年   27篇
  2022年   38篇
  2021年   43篇
  2020年   61篇
  2019年   63篇
  2018年   59篇
  2017年   47篇
  2016年   64篇
  2015年   65篇
  2014年   135篇
  2013年   141篇
  2012年   89篇
  2011年   90篇
  2010年   78篇
  2009年   89篇
  2008年   92篇
  2007年   125篇
  2006年   82篇
  2005年   72篇
  2004年   83篇
  2003年   88篇
  2002年   72篇
  2001年   83篇
  2000年   52篇
  1999年   70篇
  1998年   64篇
  1997年   66篇
  1996年   43篇
  1995年   30篇
  1994年   31篇
  1993年   28篇
  1992年   31篇
  1991年   33篇
  1990年   24篇
  1989年   33篇
  1988年   24篇
  1987年   17篇
  1986年   13篇
  1985年   21篇
  1984年   31篇
  1983年   19篇
  1982年   21篇
  1981年   29篇
  1980年   20篇
  1979年   11篇
  1978年   10篇
  1976年   8篇
  1975年   8篇
  1974年   12篇
  1973年   11篇
排序方式: 共有2559条查询结果,搜索用时 15 毫秒
51.
Environmental variables such as temperature, salinity, and irradiance are significant drivers of microalgal growth and distribution. Therefore, understanding how these variables influence fitness of potentially toxic microalgal species is particularly important. In this study, strains of the potentially harmful epibenthic dinoflagellate species Coolia palmyrensis, C. malayensis, and C. tropicalis were isolated from coastal shallow water habitats on the east coast of Australia and identified using the D1‐D3 region of the large subunit (LSU) ribosomal DNA (rDNA). To determine the environmental niche of each taxon, growth was measured across a gradient of temperature (15–30°C), salinity (20–38), and irradiance (10–200 μmol photons · m?2 · s?1). Specific growth rates of Coolia tropicalis were highest under warm temperatures (27°C), low salinities (ca. 23), and intermediate irradiance levels (150 μmol photons · m?2 · s?1), while C. malayensis showed the highest growth at moderate temperatures (24°C) and irradiance levels (150 μmol photons · m?2 · s?1) and growth rates were consistent across the range of salinity levels tested (20–38). Coolia palmyrensis had the highest growth rate of all species tested and favored moderate temperatures (24°C), oceanic salinity (35), and high irradiance (>200 μmol photons · m?2 · s?1). This is the first study to characterize the environmental niche of species from the benthic harmful algal bloom genus Coolia and provides important information to help define species distributions and inform risk management.  相似文献   
52.
We conducted an ecological risk assessment of the marine environment of Port Valdez, a fjord in south-central Alaska. Because the assessment was regional rather than site-specific and contained a large number of different stressors in a variety of environments, we required a nontraditional method to estimate risks. We created a Relative Risk Model to rank and sum individual risks numerically within each subarea, from each source, and to each habitat. Application of this model involved division of Port Valdez into 11 subareas containing specific ecological and anthropogenic structures and activities. Within each subarea, the stressor sources were analyzed to estimate exposure of receptors within habitats leading to effects relevant to the chosen assessment endpoints. The subareas were analyzed and compared to form a Port-wide perspective of ecological risk. Available chemical concentrations from sediment and mussels collected from the Port were compared to various toxicological benchmarks as a partial confirmation of the risk analysis. An estimation of the risk of polycyclic aromatic hydrocarbons (PAHs) to marine invertebrates indicated low risk. The municipal boat harbor had the highest estimate, which reflected our relative risk rankings. The Relative Risk Model approach appears robust and has potential for use in situations where multiple stressors are of concern and for assessments covering broad geographic areas. In the Port Valdez assessment the approach provided relative risk rankings for chemical and physical stressors from various sources. But data were available for confirmation of risk estimates only for the chemical stressors. The rankings are relative, and extrapolation beyond the scenario in which they were developed is not warranted. Uncertainty is large, and the numerical scores collapse a multidimensional space into a single value. Use of just the numerical score out of context is more valid than with other indexes. The value of the approach lies in the relative rankings and the accounting of the components of the relative risk score.  相似文献   
53.
Suppression of tree seedlings by the understory is an important ecological filter with implications for tree diversity and dynamics. In a greenhouse competition experiment, we used seedlings of four canopy species from coastal dune forest (Diospyros natalensis, Euclea racemosa, Sideroxylon inerme and Apodytes dimidiata) to examine the relative competitive effects of the dominant understory herb Isoglossa woodii on seedling performance. We manipulated I. woodii density, light and nutrient levels and measured growth responses. Total seedling biomass decreased with density of I. woodii. The magnitude of biomass suppression with competitor density was similar among tree species. Consequently there was no discernable hierarchy of competitive ranking among tree species. The relative growth rate of seedlings decreased at higher densities of I. woodii and increased at higher nutrient levels but was unaffected by variation in light conditions. Aboveground biomass decreased at higher densities of I. woodii and at higher light levels but increased at higher nutrient levels. Size asymmetric competition for light and nutrients may be the major driver of aboveground interactions between tree seedling and I. woodii. While tree species showed no hierarchy of competitive ability their seedlings exhibited equivalent responses to competition from an understory dominant, permitting species coexistence and the maintenance of species diversity.  相似文献   
54.
Collaborative research was conducted at the USDA-ARS Subtropical Agricultural Research Center in southern Texas to assess the microbial control potential of Beauveria bassiana and Paecilomyces fumosoroseus against Bemisia whiteflies. Laboratory assays demonstrated the capacity of both pathogens to infect Bemisia argentifolii nymphs on excised hibiscus leaves incubated at relative humidities as low as 25% at 23 ± 2°C (ca. 35% infection by B. bassiana and P. fumosoroseus resulted from applications of 0.6–1.4 × 103 conidia/mm2 of leaf surface). In small-scale field trials using portable air-assist sprayers, applications at a high rate of 5 × 1013 conidia in 180 liters water/ha produced conidial densities of ca. 1–2.5 × 103 conidia/mm2 on the lower surfaces of cucurbit leaves. Multiple applications of one isolate of P. fumosoroseus and four isolates of B. bassiana made at this rate at 4- to 5-day intervals provided >90% control of large (third- and fourth-instar) nymphs on cucumbers and cantaloupe melons. The same rate applied at 7-day intervals also provided >90% control in zucchini squash, and a one-fourth rate (1.25 × 1013 conidia/ha) applied at 4- to 5-day intervals reduced numbers of large nymphs by >85% in cantaloupe melons. In contrast to the high efficacy of the fungal applications against nymphs, effects against adult whiteflies were minimal. The results indicated that both B. bassiana and P. fumosoroseus have strong potential for microbial control of nymphal whiteflies infesting cucurbit crops.  相似文献   
55.
盐度、光照和营养盐对孔石莼(Ulva pertusa)光合作用的影响   总被引:14,自引:0,他引:14  
通过测定光合作用产氧速率研究了孔石莼Ulvapertusa不育性变种在不同盐度、光强度和营养盐水平下的光合作用特性.结果表明,盐度可影响光合作用速率,在2710lx光强下孔石莼在盐度20‰左右有最大光合作用速率;光合作用参数Pm为79.62O2,μg/cm2*h,Is为191.08μE/m2*s,IC为10.12μE/m2*s;对营养盐(NH4+-N,NO2--N,PO43--P)的吸收特征可用Michaelis-Menten方程描述,低光强(106lx)下氨氮超过0.07mmol/L时可抑制孔石莼的光合作用.  相似文献   
56.
As competition for the limited water supply available for irrigation of horticultural crops increases, research into crop management practices that enhance drought resistance, plant water-use efficiency and plant growth when water supply is limited has become increasingly essential. This experiment was conducted to determine the effect of potassium (K) nutritional status on the drought resistance of Hibiscus rosa-sinensis L. cv. Leprechaun (Hibiscus). All the treatments were fertilized with Hoagland's nutrient solution, modified to supply K as K2SO4, at 0 mM K (K0), 2.5 mM K (K2.5), and 10 mM K (K10), under two irrigation regimes (drought stressed [DS] and non-drought stressed [non-DS]). Regular irrigation and fertigation were adopted for 54 days, and drought stress treatment (initiated on day 55) lasted for 21 days; while non-DS control plants continued to receive regular irrigation and fertigation. Following the 21-day drought stress period, plants were labeled with 86Rb+ to determine the percentage of post-drought stress live roots. Both K deficiency (K0) and drought stress reduced shoot growth, but drought stress increased root growth and thus the root:shoot ratio. At K0, plants were K-deficient and had the lowest leaf K, Fe, Mn, Zn, Cu, B, Mo and Al, and highest Ca concentrations. Although the percentage of live roots was decreased by drought stress, K2.5 and K10 plants (with similar percent live roots) had greater root survival ratio after drought treatment than the K-deficient plants. These observations indicate that adequate K nutrition can improve drought resistance and root longevity in Hibiscus rosa-sinensis.  相似文献   
57.
Due to high rates of metastasis and poor clinical outcomes for patients, it is important to study the pathomechanisms of osteosarcoma. However, due to the fact that osteosarcoma shows significant interindividual variation and high heterogeneity, the identification of differentially expressed genes (DEGs) at the population level cannot answer many important questions related to osteosarcoma tumorigenesis. Therefore, a new strategy to identify dysregulated genes in osteosarcoma samples is required. The aim of this study was to improve our understanding of osteosarcoma pathogenesis by identifying genes with universal aberrant expression in osteosarcoma samples. Because the relative expression ordering of genes is stable in normal bone tissues but is disrupted in osteosarcoma tissues, we used the RankComp algorithm to identify DEGs in normal and osteosarcoma tissue samples. We then calculated the dysregulation frequency for each gene. Genes with deregulation frequencies above 80% were deemed to be universal DEGs. Next, coexpression, pathway enrichment, and protein-protein interaction network analyses were performed to characterize the functions of these genes. From 188 samples of osteosarcoma obtained from four datasets measured on different platforms, 51 universal DEGs were identified, including 4 universally upregulated genes and 47 universally downregulated genes. Genes that were differentially coexpressed with these universal DEGs were found to be enriched in 46 cancer-related pathways. In addition, functional and network analyses showed that genes with high dysregulation frequencies were involved in cancer-related functions. Thus, the commonly aberrant genes identified in osteosarcoma tissues may be important targets for osteosarcoma diagnosis and therapy.  相似文献   
58.
在油松(PinustabulaefomisCarr.)主要天然分布区晋、冀、陕、甘4省、选择12个种源36个林分(每个林分8株成年油松样木),利用气相色谱和气质联用技术,测定了油松针叶萜类相对含量,并分析了所含萜类总数在不同种源间、种源同偿同林分间的差异。  相似文献   
59.
Abstract An increasing literature accounting for various types of experiments indicates that far lower external nutrient concentrations are required by plants than is usually thought to be the case. It is concluded that the ion uptake capacity of the roots, as described by the carrier concept, is high compared to that required for maintenance of the internal concentration. Serious errors in experimental conclusions are associated with insufficient and constant nutrient addition rates. The main errors are caused by non-steady states of the plants both with regard to the internal nutrient concentrations and the relative growth rate. A dynamic concept has been proposed for direct use as the treatment variable within the range of sub-optimum nutrition. The nutritional factor is expressed as a flow, the relative nutrient addition rate in laboratory studies and the nutrient flux density in the field. The experimental use of the relative addition rate has led to steady-state nutrient status and relative growth rate and the interpretation of plant responses which differ fundamentally from accepted views. Thus, for instance, deficiency symptoms disappear, as in natural conditions, when the internal nitrogen concentration is stable, independent of level. The nutrition/growth relationships are very different from those observed when external concentration is varied. The regression line of relative growth rate on relative addition rate passes near to the origin at an angle close to 45 to the axes, which implies that the obtained relative growth rate approximates closely the treatment variable. A striking example of observed differences is the positive effect on nitrogen fixation exerted by high relative nitrogen addition rates compared to the well-known negative effect of increasing external nitrogen concentration. The application of fertilizer on the basis of the nutrient flux density concept provides the possibility of supplying fertilizers corresponding to the consumption potential of the vegetation and to the natural flux density resulting from mineralization in the soil. Nitrogen utilization is high under such conditions and the resulting feedback of nutrition on the mineralization rate suggests that there will be a long-term increase in fertility.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号