首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17814篇
  免费   1446篇
  国内免费   1131篇
  2024年   38篇
  2023年   310篇
  2022年   367篇
  2021年   532篇
  2020年   591篇
  2019年   864篇
  2018年   725篇
  2017年   701篇
  2016年   657篇
  2015年   643篇
  2014年   806篇
  2013年   1536篇
  2012年   533篇
  2011年   712篇
  2010年   620篇
  2009年   897篇
  2008年   972篇
  2007年   863篇
  2006年   876篇
  2005年   701篇
  2004年   746篇
  2003年   602篇
  2002年   563篇
  2001年   419篇
  2000年   406篇
  1999年   378篇
  1998年   382篇
  1997年   314篇
  1996年   314篇
  1995年   296篇
  1994年   249篇
  1993年   235篇
  1992年   234篇
  1991年   191篇
  1990年   152篇
  1989年   164篇
  1988年   115篇
  1987年   131篇
  1986年   101篇
  1985年   116篇
  1984年   79篇
  1983年   36篇
  1982年   48篇
  1981年   55篇
  1980年   33篇
  1979年   20篇
  1978年   21篇
  1977年   13篇
  1976年   10篇
  1972年   7篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
941.
942.
Troglobionts are organisms that are specialized for living in a subterranean environment. These organisms reside prevalently in the deepest zones of caves and in shallow subterranean habitats, and complete their entire life cycles therein. Because troglobionts in most caves depend on organic matter resources from the surface, we hypothesized that they would also select the sections of caves nearest the surface, as long as environmental conditions were favorable. Over 1 year, we analyzed, in monthly intervals, the annual distributional dynamics of a subterranean community consisting of 17 troglobiont species, in relation to multiple environmental factors. Cumulative standardized annual species richness and diversity clearly indicated the existence of two ecotones within the cave: between soil and shallow subterranean habitats, inhabited by soil and shallow troglobionts; and between the transition and inner cave zones, where the spatial niches of shallow and deep troglobionts overlap. The mean standardized annual species richness and diversity showed inverse relationships, but both contributed to a better insight into the dynamics of subterranean fauna. Regression analyses revealed that temperatures in the range 7–10°C, high moisture content of substrate, large cross section of the cave, and high pH of substrate were the most important ecological drivers governing the spatiotemporal dynamics of troglobionts. Overall, this study shows general trends in the annual distributional dynamics of troglobionts in shallow caves and reveals that the distribution patterns of troglobionts within subterranean habitats may be more complex than commonly assumed.  相似文献   
943.
944.
In recent literature, the concept of criticality aspires to provide a multifaceted risk assessment of resource supply shortage. However, most existing methodologies for the criticality assessment of raw materials are restricted to a fixed temporal and spatial reference system. They provide a snapshot in time of the equilibrium between supply and demand/economic importance and do not account for temporal changes of their indicators. The static character of criticality assessments limits the use of criticality methodologies to short‐term policy making of raw materials. In the current paper, we argue for an enhancement of the criticality framework to account for three key dynamic characteristics, namely changes of social, technical, and economic features; consideration of the spatial dimension in site‐specific assessments; and impact of changing governance frameworks. We illustrate how these issues were addressed in studies outside of the field of criticality and identify the dynamic parameters that influence resource supply and demand based on a review of studies that belong to the general field of resource supply and demand. The parameters are grouped in seven categories: extraction, social, economic, technical, policy, market dynamics, and environmental. We explore how these parameters were considered in the reviewed studies and propose ways and specific examples of addressing the dynamic effects in the criticality indicators. Furthermore, we discuss the current work on future scenarios to provide reference points for indicator benchmarks. The insights and guidelines derived from the review and our recommendations for future research set the foundations for an enhanced dynamic and site‐specific criticality assessment framework.  相似文献   
945.
Species interactions change when the external conditions change. How these changes affect microbial community properties is an open question. We address this question using a two‐species consortium in which species interactions change from exploitation to competition depending on the carbon source provided. We built a mathematical model and calibrated it using single‐species growth measurements. This model predicted that low frequencies of change between carbon sources lead to species loss, while intermediate and high frequencies of change maintained both species. We experimentally confirmed these predictions by growing co‐cultures in fluctuating environments. These findings complement more established concepts of a diversity peak at intermediate disturbance frequencies. They also provide a mechanistic understanding for how the dynamics at the community level emerges from single‐species behaviours and interspecific interactions. Our findings suggest that changes in species interactions can profoundly impact the ecological dynamics and properties of microbial systems.  相似文献   
946.
Evidence that organisms evolve rapidly enough to alter ecological dynamics necessitates investigation of the reciprocal links between ecology and evolution. Data that link genotype to phenotype to ecology are needed to understand both the process and ecological consequences of rapid evolution. Here, we quantified the suite of elements in individuals (i.e., ionome) and differences in the fluxes of key nutrients across populations of threespine stickleback. We find that allelic variation associated with freshwater adaptation that controls bony plating is associated with changes in the ionome and nutrient recycling. More broadly, we find that adaptation of marine stickleback to freshwater conditions shifts the ionomes of natural populations and populations raised in common gardens. In both cases ionomic divergence between populations was primarily driven by differences in trace elements rather than elements typically associated with bone. These findings demonstrate the utility of ecological stoichiometry and the importance of ionome‐wide data in understanding eco‐evolutionary dynamics.  相似文献   
947.
Spatial environmental heterogeneity coupled with dispersal can promote ecological persistence of diverse metacommunities. Does this premise hold when metacommunities evolve? Using a two‐resource competition model, we studied the evolution of resource‐uptake specialisation as a function of resource type (substitutable to essential) and shape of the trade‐off between resource uptake affinities (generalist‐ to specialist‐favouring). In spatially homogeneous environments, evolutionarily stable coexistence of consumers is only possible for sufficiently substitutable resources and specialist‐favouring trade‐offs. Remarkably, these same conditions yield comparatively low diversity in heterogeneous environments, because they promote sympatric evolution of two opposite resource specialists that, together, monopolise the two resources everywhere. Consumer diversity is instead maximised for intermediate trade‐offs and clearly substitutable or clearly essential resources, where evolved metacommunities are characterised by contrasting selection regimes. Taken together, our results present new insights into resource‐competition‐mediated evolutionarily stable diversity in homogeneous and heterogeneous environments, which should be applicable to a wide range of systems.  相似文献   
948.
Ontogenetic dietary shifts (ODSs), the changes in diet utilisation occurring over the life span of an individual consumer, are widespread in the animal kingdom. Understanding ODSs provides fundamental insights into the biological and ecological processes that function at the individual, population and community levels, and is critical for the development and testing of hypotheses around key concepts in trophic theory on model organisms. Here, we synthesise historic and contemporary research on ODSs in fishes, and identify where further research is required. Numerous biotic and abiotic factors can directly or indirectly influence ODSs, but the most influential of these may vary spatially, temporally and interspecifically. Within the constraints imposed by prey availability, we identified competition and predation risk as the major drivers of ODSs in fishes. These drivers do not directly affect the trophic ontogeny of fishes, but may have an indirect effect on diet trajectories through ontogenetic changes in habitat use and concomitant changes in prey availability. The synthesis provides compelling evidence that ODSs can have profound ecological consequences for fish by, for example, enhancing individual growth and lifetime reproductive output or reducing the risk of mortality. ODSs may also influence food‐web dynamics and facilitate the coexistence of sympatric species through resource partitioning, but we currently lack a holistic understanding of the consequences of ODSs for population, community and ecosystem processes and functioning. Studies attempting to address these knowledge gaps have largely focused on theoretical approaches, but empirical research under natural conditions, including phylogenetic and evolutionary considerations, is required to test the concepts. Research focusing on inter‐individual variation in ontogenetic trajectories has also been limited, with the complex relationships between individual behaviour and environmental heterogeneity representing a particularly promising area for future research.  相似文献   
949.
Currently, the impact of introduced predators on small mammal population decline is a focal research direction in the Australian desert literature. In all likelihood though, single‐factor explanation of population dynamics is inadequate, leaving gaps in our knowledge of the multitude of potential influences on small mammal abundance and occupancy patterns in time and space. Here, we investigated floristic gradients across four potential refuge sites of the central rock‐rat, Zyzomys pedunculatus, a granivore rodent (50–120 g) that is endemic to central Australia and is categorised as critically endangered. The study took place in Tjoritja/West MacDonnell National Park in the MacDonnell Ranges bioregion. Floristic sampling was allocated across the four sites, the locations of which were predetermined by an established monitoring and management programme for the central rock‐rat. Our aim was to examine the relationship between environmental gradients and floristic composition across the four sites, and thereby test the extent to which the patterns of food type and food availability can inform central rock‐rat spatio‐temporal dynamics. We found high site‐scale floristic patterning that related foremost to elevation and then to antecedent rainfall and time‐since‐fire and fire‐severity effects. To interpret these results, we applied the principles of refuge theory and we described a gradient from core refuge habitat to intermittent and then marginal habitat within the current central rock‐rat stronghold area. Overall, our results implied a strong floristic basis to central rock‐rat site occurrence, and they thus compel us to take explicit account of spatial (elevation) and temporal (rainfall–productivity and fire‐disturbance) influences on the food axis of potential refuge sites of this critically endangered species.  相似文献   
950.
Nonnative conifers are widespread in the southern hemisphere, where their use as plantation species has led to adverse ecosystem impacts sometimes intensified by invasion. Mechanical removal is a common strategy used to reduce or eliminate the negative impacts of nonnative conifers, and encourage native regeneration. However, a variety of factors may preclude active ecological restoration following removal. As a result, passive restoration – unassisted natural vegetation regeneration – is common following conifer removal. We asked, ‘what is the response of understorey cover to removal of nonnative conifer stands followed by passive restoration?' We sampled understorey cover in three site types: two‐ to ten‐year‐old clearcuts, native forest and current plantations. We then grouped understorey species by origin (native/nonnative) and growth form, and compared proportion and per cent cover of these groups as well as of bare ground and litter between the three site types. For clearcuts, we also analysed the effect of time since clearcut on the studied variables. We found that clearcuts had a significantly higher average proportion of nonnative understorey vegetation cover than native forest sites, where nonnative vegetation was nearly absent. The understorey of clearcut sites also averaged more overall vegetation cover and more nonnative vegetation cover (in particular nonnative shrubs and herbaceous species) than either plantation or native forest sites. Notably, 99% of nonnative shrub cover in clearcuts was the invasive nonnative species Scotch broom (Cytisus scoparius). After ten years of passive recovery since clearcutting, the proportion of understorey vegetation cover that is native has not increased and remains far below the proportion observed in native forest sites. Reduced natural regeneration capacity of the native ecosystem, presence of invasive species in the surrounding landscape and land‐use legacies from plantation forestry may inhibit native vegetation recovery and benefit opportunistic invasives, limiting the effectiveness of passive restoration in this context. Abstract in Spanish is available with online material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号