首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   260篇
  免费   21篇
  国内免费   2篇
  2023年   8篇
  2022年   8篇
  2021年   4篇
  2020年   7篇
  2019年   14篇
  2018年   5篇
  2017年   7篇
  2016年   9篇
  2015年   10篇
  2014年   4篇
  2013年   17篇
  2012年   8篇
  2011年   7篇
  2010年   10篇
  2009年   17篇
  2008年   16篇
  2007年   9篇
  2006年   6篇
  2005年   11篇
  2004年   14篇
  2003年   7篇
  2002年   9篇
  2001年   6篇
  2000年   7篇
  1999年   8篇
  1998年   7篇
  1997年   5篇
  1996年   6篇
  1995年   5篇
  1994年   5篇
  1993年   7篇
  1992年   5篇
  1991年   8篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有283条查询结果,搜索用时 15 毫秒
71.
The stoichiometric complex formed between bovine -trypsin and Momordica charantia, Linn. Cucurbitaceae trypsin inhibitor A (MCTI-A) was crystallized and its X-ray crystal structure was refined to a final R value of 0.179 using data of 7.0- to 1.8-Å resolution. Combination with results on the complex of MCTI-A with porcine trypsin gives the sequence of MCTI-A definitely, of which 13 residues are conserved compared with other squash family trypsin inhibitors. Its spatial structure and the conformation of its primary binding segment from Cys3I (P3) to Glu7I (P3), which contains a reactive scissile bond Arg5I C–Ile6I N, were found to be very similar to the other squash family proteinase inhibitors.  相似文献   
72.
We present a two-step approach to modeling the transmembrane spanning helical bundles of integral membrane proteins using only sparse distance constraints, such as those derived from chemical cross-linking, dipolar EPR and FRET experiments. In Step 1, using an algorithm, we developed, the conformational space of membrane protein folds matching a set of distance constraints is explored to provide initial structures for local conformational searches. In Step 2, these structures refined against a custom penalty function that incorporates both measures derived from statistical analysis of solved membrane protein structures and distance constraints obtained from experiments. We begin by describing the statistical analysis of the solved membrane protein structures from which the theoretical portion of the penalty function was derived. We then describe the penalty function, and, using a set of six test cases, demonstrate that it is capable of distinguishing helical bundles that are close to the native bundle from those that are far from the native bundle. Finally, using a set of only 27 distance constraints extracted from the literature, we show that our method successfully recovers the structure of dark-adapted rhodopsin to within 3.2 A of the crystal structure.  相似文献   
73.
Pharmacokinetic modelling of radiotracers for positron emission tomography (PET) imaging of neuroreceptors can be performed with time-activity data for brain and blood. We aimed to develop an alternative to withdrawal of arterial blood samples for acquisition of a blood curve. A supportive primate chair was constructed out of styrofoam and fixed to the head portion of the bed of a PET scanner. A lightly anaesthetised rhesus monkey was positioned in the chair in a sitting position and injected with the radiotracer. The styrofoam chair provided sufficient support for the monkey. The presence of the chair in the PET scanner caused negligible attenuation of radiation, allowing simultaneous acquisition of dynamic data from the subject's brain and heart. We conclude that a styrofoam primate chair is an ideal tool to measure blood and brain data from a rhesus monkey with PET. Invasiveness to the animal is reduced, as well as experimenter time.  相似文献   
74.
The program DYANA, for calculation of solution structures of biomolecules with an algorithm based on simulated annealing by torsion angle dynamics, has been supplemented with a new routine, PSEUDYANA, that enables efficient use of pseudocontact shifts as additional constraints in structure calculations of paramagnetic metalloproteins. PSEUDYANA can determine the location of the metal ion inside the protein frame and allows to define a single tensor of magnetic susceptibility from a family of conformers. As an illustration, a PSEUDYANA structure calculation is provided for a metal-undecapeptide complex, where simulated pseudocontact shifts but no NOE restraints are used as conformational constraints.  相似文献   
75.
Introducing experimental values as restraints into molecular dynamics (MD) simulations to bias the values of particular molecular properties, such as nuclear Overhauser effect intensities or distances, 3J coupling constants, chemical shifts or crystallographic structure factors, towards experimental values is a widely used structure refinement method. To account for the averaging of experimentally derived quantities inherent in the experimental techniques, time-averaging restraining methods may be used. In the case of structure refinement using 3J coupling constants from NMR experiments, time-averaging methods previously proposed can suffer from large artificially induced structural fluctuations. A modified time-averaged restraining potential energy function is proposed which overcomes this problem. The different possible approaches are compared using stochastic dynamics simulations of antamanide, a cyclic peptide of ten residues.  相似文献   
76.
77.
The three-dimensional crystal structure of the NAD(+)-linked glutamate dehydrogenase from Clostridium symbiosum has been solved to 1.96 A resolution by a combination of isomorphous replacement and molecular averaging and refined to a conventional crystallographic R factor of 0.227. Each subunit in this multimeric enzyme is organised into two domains separated by a deep cleft. One domain directs the self-assembly of the molecule into a hexameric oligomer with 32 symmetry. The other domain is structurally similar to the classical dinucleotide binding fold but with the direction of one of the strands reversed. Difference Fourier analysis on the binary complex of the enzyme with NAD+ shows that the dinucleotide is bound in an extended conformation with the nicotinamide moiety deep in the cleft between the two domains. Hydrogen bonds between the carboxyamide group of the nicotinamide ring and the side chains of T209 and N240, residues conserved in all hexameric GDH sequences, provide a positive selection for the syn conformer of this ring. This results in a molecular arrangement in which the A face of the nicotinamide ring is buried against the enzyme surface and the B face is exposed, adjacent to a striking cluster of conserved residues including K89, K113, and K125. Modeling studies, correlated with chemical modification data, have implicated this region as the glutamate/2-oxoglutarate binding site and provide an explanation at the molecular level for the B type stereospecificity of the hydride transfer of GDH during the catalytic cycle.  相似文献   
78.
Large concerted motions of proteins which span its “essential space,” are an important component of protein dynamics. We investigate to what extent structure ensembles generated with standard structure calculation techniques such as simulated annealing can capture these motions by comparing them to long-time molecular dynamics (MD) trajectories. The motions are analyzed by principal component analysis and compared using inner products of eigenvectors of the respective covariance matrices. Two very different systems are studied, the β-spectrin PH domain and the single-stranded DNA binding protein (ssDBP) from the filamentous phage Pf3. A comparison of the ensembles from NMR and MD shows significant overlap of the essential spaces, which in the case of ssDBP is extraordinarily high. The influence of variations in the specifications of distance restraints is investigated. We also study the influence of the selection criterion for the final structure ensemble on the definition of mobility. The results suggest a modified criterion that improves conformational sampling in terms of amplitudes of correlated motion. Proteins 31:370–382, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
79.
Large rigid-body domain movements are critical to GroEL-mediated protein folding, especially apical domain elevation and twist associated with the formation of a folding chamber upon binding ATP and co-chaperonin GroES. Here, we have modeled the anisotropic displacements of GroEL domains from various crystallized states, unliganded GroEL, ATPgammaS-bound, ADP-AlFx/GroES-bound, and ADP/GroES bound, using translation-libration-screw (TLS) analysis. Remarkably, the TLS results show that the inherent motions of unliganded GroEL, a polypeptide-accepting state, are biased along the transition pathway that leads to the folding-active state. In the ADP-AlFx/GroES-bound folding-active state the dynamic modes of the apical domains become reoriented and coupled to the motions of bound GroES. The ADP/GroES complex exhibits these same motions, but they are increased in magnitude, potentially reflecting the decreased stability of the complex after nucleotide hydrolysis. Our results have allowed the visualization of the anisotropic molecular motions that link the static conformations previously observed by X-ray crystallography. Application of the same analyses to other macromolecules where rigid body motions occur may give insight into the large scale dynamics critical for function and thus has the potential to extend our fundamental understanding of molecular machines.  相似文献   
80.
How B cells and dendritic cells may cooperate in antigen purification   总被引:1,自引:0,他引:1  
The specificity of the immunological responses is achieved through the cooperation of three classes of cells: B and T lymphocytes, and dendritic cells (DCs). A critical, intensely studied interaction is that between DCs and T cells, during which the DC presents MHC-bound antigenic fragments to the T cell receptor (TCR). There has been recent excitement about the possibility of increasing the signal-to-noise ratio in the detection of cognate antigen-TCR couples, by the use of kinetic proofreading mechanisms. We examine here the signal-to-noise problem in a broader perspective, and in particular, address the question of possible "antigen purification" mechanisms, prior to their presentation to the T cells. Ways in which the DCs might concentrate, purify and preserve their load of captured antigens are considered: (i) If antigens can be transferred from one DC to another, in such a way that the richer a DC in antigen, the more it captures antigens from other DCs, the antigens may end up concentrated in a small subset of DCs, (ii) antigen purification may be achieved through recycling interactions between DCs and B cells. A DC would transmit to a B cell antigen mixtures, and the DC would recapture only the antigens which can bind to the B cell's antibodies and (iii) dendrites, when they are present, may play an essential role in recapturing the antigens that were used in interactions of DCs with T cells, B cells, or other DCs, thereby reducing antigen losses. More generally, we provide a personal interpretation of cell-to-cell antigen transfers, in terms of a strategy in which there is a progressive emergence, through multiple interactions, of subsets of cells of each type better and better prepared for the subsequent rounds of interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号