首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   260篇
  免费   21篇
  国内免费   2篇
  2023年   8篇
  2022年   8篇
  2021年   4篇
  2020年   7篇
  2019年   14篇
  2018年   5篇
  2017年   7篇
  2016年   9篇
  2015年   10篇
  2014年   4篇
  2013年   17篇
  2012年   8篇
  2011年   7篇
  2010年   10篇
  2009年   17篇
  2008年   16篇
  2007年   9篇
  2006年   6篇
  2005年   11篇
  2004年   14篇
  2003年   7篇
  2002年   9篇
  2001年   6篇
  2000年   7篇
  1999年   8篇
  1998年   7篇
  1997年   5篇
  1996年   6篇
  1995年   5篇
  1994年   5篇
  1993年   7篇
  1992年   5篇
  1991年   8篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有283条查询结果,搜索用时 500 毫秒
61.
Lange OF  Baker D 《Proteins》2012,80(3):884-895
Recent work has shown that NMR structures can be determined by integrating sparse NMR data with structure prediction methods such as Rosetta. The experimental data serve to guide the search for the lowest energy state towards the deep minimum at the native state which is frequently missed in Rosetta de novo structure calculations. However, as the protein size increases, sampling again becomes limiting; for example, the standard Rosetta protocol involving Monte Carlo fragment insertion starting from an extended chain fails to converge for proteins over 150 amino acids even with guidance from chemical shifts (CS-Rosetta) and other NMR data. The primary limitation of this protocol--that every folding trajectory is completely independent of every other--was recently overcome with the development of a new approach involving resolution-adapted structural recombination (RASREC). Here we describe the RASREC approach in detail and compare it to standard CS-Rosetta. We show that the improved sampling of RASREC is essential in obtaining accurate structures over a benchmark set of 11 proteins in the 15-25 kDa size range using chemical shifts, backbone RDCs and HN-HN NOE data; in a number of cases the improved sampling methodology makes a larger contribution than incorporation of additional experimental data. Experimental data are invaluable for guiding sampling to the vicinity of the global energy minimum, but for larger proteins, the standard Rosetta fold-from-extended-chain protocol does not converge on the native minimum even with experimental data and the more powerful RASREC approach is necessary to converge to accurate solutions.  相似文献   
62.
Fan H  Periole X  Mark AE 《Proteins》2012,80(7):1744-1754
The efficiency of using a variant of Hamiltonian replica‐exchange molecular dynamics (Chaperone H‐replica‐exchange molecular dynamics [CH‐REMD]) for the refinement of protein structural models generated de novo is investigated. In CH‐REMD, the interaction between the protein and its environment, specifically, the electrostatic interaction between the protein and the solvating water, is varied leading to cycles of partial unfolding and refolding mimicking some aspects of folding chaperones. In 10 of the 15 cases examined, the CH‐REMD approach sampled structures in which the root‐mean‐square deviation (RMSD) of secondary structure elements (SSE‐RMSD) with respect to the experimental structure was more than 1.0 Å lower than the initial de novo model. In 14 of the 15 cases, the improvement was more than 0.5 Å. The ability of three different statistical potentials to identify near‐native conformations was also examined. Little correlation between the SSE‐RMSD of the sampled structures with respect to the experimental structure and any of the scoring functions tested was found. The most effective scoring function tested was the DFIRE potential. Using the DFIRE potential, the SSE‐RMSD of the best scoring structures was on average 0.3 Å lower than the initial model. Overall the work demonstrates that targeted enhanced‐sampling techniques such as CH‐REMD can lead to the systematic refinement of protein structural models generated de novo but that improved potentials for the identification of near‐native structures are still needed. Proteins 2012; © 2012 Wiley Periodicals, Inc.  相似文献   
63.
Zhu J  Xie L  Honig B 《Proteins》2006,65(2):463-479
In this article, we present an iterative, modular optimization (IMO) protocol for the local structure refinement of protein segments containing secondary structure elements (SSEs). The protocol is based on three modules: a torsion-space local sampling algorithm, a knowledge-based potential, and a conformational clustering algorithm. Alternative methods are tested for each module in the protocol. For each segment, random initial conformations were constructed by perturbing the native dihedral angles of loops (and SSEs) of the segment to be refined while keeping the protein body fixed. Two refinement procedures based on molecular mechanics force fields - using either energy minimization or molecular dynamics - were also tested but were found to be less successful than the IMO protocol. We found that DFIRE is a particularly effective knowledge-based potential and that clustering algorithms that are biased by the DFIRE energies improve the overall results. Results were further improved by adding an energy minimization step to the conformations generated with the IMO procedure, suggesting that hybrid strategies that combine both knowledge-based and physical effective energy functions may prove to be particularly effective in future applications.  相似文献   
64.
Bacterial chaperonin, GroEL, together with its co-chaperonin, GroES, facilitates the folding of a variety of polypeptides. Experiments suggest that GroEL stimulates protein folding by multiple cycles of binding and release. Misfolded proteins first bind to an exposed hydrophobic surface on GroEL. GroES then encapsulates the substrate and triggers its release into the central cavity of the GroEL/ES complex for folding. In this work, we investigate the possibility to facilitate protein folding in molecular dynamics simulations by mimicking the effects of GroEL/ES namely, repeated binding and release, together with spatial confinement. During the binding stage, the (metastable) partially folded proteins are allowed to attach spontaneously to a hydrophobic surface within the simulation box. This destabilizes the structures, which are then transferred into a spatially confined cavity for folding. The approach has been tested by attempting to refine protein structural models generated using the ROSETTA procedure for ab initio structure prediction. Dramatic improvements in regard to the deviation of protein models from the corresponding experimental structures were observed. The results suggest that the primary effects of the GroEL/ES system can be mimicked in a simple coarse-grained manner and be used to facilitate protein folding in molecular dynamics simulations. Furthermore, the results support the assumption that the spatial confinement in GroEL/ES assists the folding of encapsulated proteins.  相似文献   
65.
A critical evaluation of the performance of X-ray refinement protocols using various energy functions is presented using the bovine pancreatic trypsin inhibitor (BPTI) protein. The four potential energy functions we explored include: (1) fully quantum mechanical calculations; (2) one based on an incomplete molecular mechanics (MM) energy function employed in the Crystallography and NMR System (CNS) with empirical parameters developed by Engh and Huber (EH), which lacks electrostatic and attractive van der Waals terms; (3) one based on a complete MM energy function (AMBER ff99 parameter set); and (4) the same as 3, with the addition of a Generalized Born (GB) implicit solvation term. The R, R (free), real space R values of the refined structures and deviations from the original experimental structure were used to assess the relative performance. It was found that at 1 Angstrom resolution the physically based energy functions 1, 3, and 4 performed better than energy function 2, which we attribute to the better representation of key interactions, particularly electrostatics. The observed departures from the experimental structure were similar for the refinements with physically based energy functions and were smaller than the structure refined with EH. A test refinement was also performed with the reflections truncated at a high-resolution cutoff of 2.5 Angstrom and with random perturbations introduced into the initial coordinates, which showed that low-resolution refinements with physically based energy functions held the structure closer to the experimental structure solved at 1 Angstrom resolution than the EH-based refinements.  相似文献   
66.
Synthetic channel‐forming peptides that can restore chloride conductance across epithelial membranes could provide a novel treatment of channelopathies such as cystic fibrosis. Among a series of 22‐residue peptides derived from the second transmembrane segment of the glycine receptor α1‐subunit (M2GlyR), p22‐S22W (KKKKP ARVGL GITTV LTMTT QW) is particularly promising with robust membrane insertion and assembly. The concentration to reach one‐half maximal short circuit current is reduced to 45 ± 6 μM from that of 210 ± 70 μM of peptide p22 (KKKKP ARVGL GITTV LTMTT QS). However, this is accompanied with nearly 50% reduction in conductance. Toward obtaining a molecular level understanding of the channel activities, we combine information from solution NMR, existing biophysical data, and molecular modeling to construct atomistic models of the putative pentameric channels of p22 and p22‐S22W. Simulations in membrane bilayers demonstrate that these structural models, even though highly flexible, are stable and remain adequately open for ion conductance. The membrane‐anchoring tryptophan residues not only rigidify the whole channel, suggesting increased stability, but also lead to global changes in the pore profile. Specifically, the p22‐S22W pore has a smaller opening on average, consistent with lower measured conductance. Direct observation of several incidences of chloride transport suggests several qualitative features of how these channels might selectively conduct anions. The current study thus helps to rationalize the functional consequences of introducing a single C‐terminal tryptophan. Availability of these structural models also paves the way for future work to rationally modify and improve M2GlyR‐derived peptides toward potential peptide‐based channel replacement therapy. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
67.
Following the computation of a lattice energy landscape which predicted that there should be more stable, denser forms of (R)‐1‐phenylethylammonium‐(S)‐2‐phenylbutyrate, crystallizations from a range of solvents were performed to search for other polymorphs and investigate the possibility that the known P41 structure could be a hydrate. Extensive crystallization experiments from a wide range of solvents gave fine needles or microcrystalline samples. A redetermination of the P41 structure by powder X‐ray diffraction located all protons, and in conjunction with other experimental and computational evidence showed that the structure was anhydrous. Evidence for two additional forms was found as mixtures with form I. These include an orthorhombic form, possibly a Z′ = 3 polymorph, and another as yet unidentified form obtained as a minor component from dichloromethane solution. However, both these forms appear to be metastable with respect to form I (P41), which is therefore probably the most thermodynamically stable form that can be crystallized from solution under ambient conditions. This determination of the solid state behavior of the less readily crystallized member of the diastereomeric salt system (R)‐1‐phenylethylammonium‐(R/S)‐2‐phenylbutyrate provides a challenge to the theoretical modeling to explain its ideal resolution behavior. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
68.
69.
Reaction of [Ru2(O2CMe)4]Cl and K2[Ni(CN)4] forms [Ru2(O2CMe)4]2[Ni(CN)4] with the targeted layered structure possessing Ru-NCNi linkages, albeit strained, with Ru-NC and Ni-CN angles in the range of 147-167°. The magnetic properties of [Ru2(O2CMe)4]2[Ni(CN)4] can be fit to a zero-field splitting model with D/kB = 95 K (66 cm−1).  相似文献   
70.
We have constructed an extensive database of 13C C and C chemical shifts in proteins of solution, for proteins of which a high-resolution crystal structure exists, and for which the crystal structure has been shown to be essentially identical to the solution structure. There is no systematic effect of temperature, reference compound, or pH on reported shifts, but there appear to be differences in reported shifts arising from referencing differences of up to 4.2 ppm. The major factor affecting chemical shifts is the backbone geometry, which causes differences of ca. 4 ppm between typical - helix and -sheet geometries for C, and of ca. 2 ppm for C. The side-chain dihedral angle 1 has an effect of up to 0.5 ppm on the C shift, particularly for amino acids with branched side-chains at C. Hydrogen bonding to main-chain atoms has an effect of up to 0.9 ppm, which depends on the main- chain conformation. The sequence of the protein and ring-current shifts from aromatic rings have an insignificant effect (except for residues following proline). There are significant differences between different amino acid types in the backbone geometry dependence; the amino acids can be grouped together into five different groups with different , shielding surfaces. The overall fit of individual residues to a single non-residue-specific surface, incorporating the effects of hydrogen bonding and 1 angle, is 0.96 ppm for both C and C. The results from this study are broadly similar to those from ab initio studies, but there are some differences which could merit further attention.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号