首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   262篇
  免费   19篇
  国内免费   2篇
  283篇
  2023年   8篇
  2022年   8篇
  2021年   4篇
  2020年   7篇
  2019年   14篇
  2018年   5篇
  2017年   7篇
  2016年   9篇
  2015年   10篇
  2014年   4篇
  2013年   17篇
  2012年   8篇
  2011年   7篇
  2010年   10篇
  2009年   17篇
  2008年   16篇
  2007年   9篇
  2006年   6篇
  2005年   11篇
  2004年   14篇
  2003年   7篇
  2002年   9篇
  2001年   6篇
  2000年   7篇
  1999年   8篇
  1998年   7篇
  1997年   5篇
  1996年   6篇
  1995年   5篇
  1994年   5篇
  1993年   7篇
  1992年   5篇
  1991年   8篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有283条查询结果,搜索用时 15 毫秒
31.
Pauling's mastery of peptide stereochemistry—based on small molecule crystal structures and the theory of chemical bonding—led to his realization that the peptide unit is planar and then to the Pauling–Corey–Branson model of the α‐helix. Similarly, contemporary protein structure refinement is based on experimentally determined diffraction data together with stereochemical restraints. However, even an X‐ray structure at ultra‐high resolution is still an under‐determined model in which the linkage among refinement parameters is complex. Consequently, restrictions imposed on any given parameter can affect the entire structure. Here, we examine recent studies of high resolution protein X‐ray structures, where substantial distortions of the peptide plane are found to be commonplace. Planarity is assessed by the ω‐angle, a dihedral angle determined by the peptide bond (C? N) and its flanking covalent neighbors; for an ideally planar trans peptide, ω = 180°. By using a freely available refinement package, Phenix [Afonine et al. (2012) Acta Cryst. D, 68:352–367], we demonstrate that tightening default restrictions on the ω‐angle can significantly reduce apparent deviations from peptide unit planarity without consequent reduction in reported evaluation metrics (e.g., R‐factors). To be clear, our result does not show that substantial non‐planarity is absent, only that an equivalent alternative model is possible. Resolving this disparity will ultimately require improved understanding of the deformation energy. Meanwhile, we urge inclusion of ω‐angle statistics in new structure reports in order to focus critical attention on the usual practice of assigning default values to ω‐angle constraints during structure refinement. Proteins 2015; 83:1687–1692. © 2015 Wiley Periodicals, Inc.  相似文献   
32.
The principal bottleneck in protein structure prediction is the refinement of models from lower accuracies to the resolution observed by experiment. We developed a novel constraints‐based refinement method that identifies a high number of accurate input constraints from initial models and rebuilds them using restrained torsion angle dynamics (rTAD). We previously created a Bayesian statistics‐based residue‐specific all‐atom probability discriminatory function (RAPDF) to discriminate native‐like models by measuring the probability of accuracy for atom type distances within a given model. Here, we exploit RAPDF to score (i.e., filter) constraints from initial predictions that may or may not be close to a native‐like state, obtain consensus of top scoring constraints amongst five initial models, and compile sets with no redundant residue pair constraints. We find that this method consistently produces a large and highly accurate set of distance constraints from which to build refinement models. We further optimize the balance between accuracy and coverage of constraints by producing multiple structure sets using different constraint distance cutoffs, and note that the cutoff governs spatially near versus distant effects in model generation. This complete procedure of deriving distance constraints for rTAD simulations improves the quality of initial predictions significantly in all cases evaluated by us. Our procedure represents a significant step in solving the protein structure prediction and refinement problem, by enabling the use of consensus constraints, RAPDF, and rTAD for protein structure modeling and refinement. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
33.
Biophysical forcefields have contributed less than originally anticipated to recent progress in protein structure prediction. Here, we have investigated the selectivity of a recently developed all‐atom free‐energy forcefield for protein structure prediction and quality assessment (QA). Using a heuristic method, but excluding homology, we generated decoy‐sets for all targets of the CASP7 protein structure prediction assessment with <150 amino acids. The decoys in each set were then ranked by energy in short relaxation simulations and the best low‐energy cluster was submitted as a prediction. For four of nine template‐free targets, this approach generated high‐ranking predictions within the top 10 models submitted in CASP7 for the respective targets. For these targets, our de‐novo predictions had an average GDT_S score of 42.81, significantly above the average of all groups. The refinement protocol has difficulty for oligomeric targets and when no near‐native decoys are generated in the decoy library. For targets with high‐quality decoy sets the refinement approach was highly selective. Motivated by this observation, we rescored all server submissions up to 200 amino acids using a similar refinement protocol, but using no clustering, in a QA exercise. We found an excellent correlation between the best server models and those with the lowest energy in the forcefield. The free‐energy refinement protocol may thus be an efficient tool for relative QA and protein structure prediction. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
34.
In the absence of a high resolution crystal structure for the ribosome, numerous research groups are carrying out low resolution structural studies using neutron diffraction, electron microscopy, fluorescence energy transfer, chemical crosslinking, chemical footprinting studies, and other methods. We have developed a computer-based refinement method for incorporating these data into low resolution three-dimensional models. The method is based on a molecular mechanics approach, with proteins represented by spherical particles of suitable diameter and the ribosomal RNA represented by a string of spherical pseudoatoms, one for each nucleotide. Experimental data are used to derive constraints that are introduced through a special force field (potential function). Models are refined by simulated annealing. Since every term in the force field is quadratic, any model that satisfies all of the input data has an energy of zero; higher energies indicate residual unsatisfied constraints. The residual energy provides a quantitative statement of model quality and can be used to identify conflicts in the experimental data. The method has been applied to the refinement of a low resolution model for the 30S subunit (the small subunit) of theE. coli ribosome. Since this is a very underdetermined system, the range of acceptable models has also been explored. This provides an estimate of the resolution of the structure, which is about 15 Å overall, with the uncertainty in position of individual nucleotides ranging from about 5 Å to 50 Å.  相似文献   
35.
One of the major limitations of computational protein structure prediction is the deviation of predicted models from their experimentally derived true, native structures. The limitations often hinder the possibility of applying computational protein structure prediction methods in biochemical assignment and drug design that are very sensitive to structural details. Refinement of these low‐resolution predicted models to high‐resolution structures close to the native state, however, has proven to be extremely challenging. Thus, protein structure refinement remains a largely unsolved problem. Critical assessment of techniques for protein structure prediction (CASP) specifically indicated that most predictors participating in the refinement category still did not consistently improve model quality. Here, we propose a two‐step refinement protocol, called 3Drefine, to consistently bring the initial model closer to the native structure. The first step is based on optimization of hydrogen bonding (HB) network and the second step applies atomic‐level energy minimization on the optimized model using a composite physics and knowledge‐based force fields. The approach has been evaluated on the CASP benchmark data and it exhibits consistent improvement over the initial structure in both global and local structural quality measures. 3Drefine method is also computationally inexpensive, consuming only few minutes of CPU time to refine a protein of typical length (300 residues). 3Drefine web server is freely available at http://sysbio.rnet.missouri.edu/3Drefine/ . Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
36.
《Anthrozo?s》2013,26(3):288-303
Abstract

Laboratory-housed non-human primates may experience a range of potential stressors, including physical and chemical restraint, venepuncture, injection, catching and cage-change. Training them to co-operate, using positive reinforcement techniques, is one means of significantly reducing the adverse impact of such procedures upon them and, therefore, is a refinement. Furthermore, the additional time that staff spend with the primates, and the need for individual recognition and close observation of animal behavior, mean that the trainer develops a relationship with each individual animal which can be beneficial for animal welfare (e.g., by reducing the occurrence of abnormal behavior and fear of humans). We surveyed use of training in thirteen UK establishments using and breeding primates, utilizing a mixed-mode questionnaire. The survey demonstrated that there is widespread awareness of training as a refinement and appreciation of its diverse benefits, but training is not used as widely or as fully as it might be. This is largely due to real constraints (principally staff and time and a lack of confidence in ability to train), and perceived constraints (such as a supposed lack of information on how to train and assessment of the benefits, and an overestimation of the time investment needed). There is also considerable variation between establishments in the purposes of training and techniques used, with a reliance on negative reinforcement in three. We conclude that there is considerable scope for refinement of common scientific, veterinary and husbandry procedures, and refer to some resources designed to help establishments take action (e.g., Prescott and Buchanan-Smith 2003).  相似文献   
37.
Protein structure refinement aims to perform a set of operations given a predicted structure to improve model quality and accuracy with respect to the native in a blind fashion. Despite the numerous computational approaches to the protein refinement problem reported in the previous three CASPs, an overwhelming majority of methods degrade models rather than improve them. We initially developed a method tested using blind predictions during CASP10 which was officially ranked in 5th place among all methods in the refinement category. Here, we present Princeton_TIGRESS, which when benchmarked on all CASP 7,8,9, and 10 refinement targets, simultaneously increased GDT_TS 76% of the time with an average improvement of 0.83 GDT_TS points per structure. The method was additionally benchmarked on models produced by top performing three‐dimensional structure prediction servers during CASP10. The robustness of the Princeton_TIGRESS protocol was also tested for different random seeds. We make the Princeton_TIGRESS refinement protocol freely available as a web server at http://atlas.princeton.edu/refinement . Using this protocol, one can consistently refine a prediction to help bridge the gap between a predicted structure and the actual native structure. Proteins 2014; 82:794–814. © 2013 Wiley Periodicals, Inc.  相似文献   
38.
Structures of hitherto unknown protein complexes can be predicted by docking the solved protein monomers. Here, we present a method to refine initial docking estimates of protein complex structures by a Monte Carlo approach including rigid-body moves and side-chain optimization. The energy function used is comprised of van der Waals, Coulomb, and atomic contact energy terms. During the simulation, we gradually shift from a novel smoothed van der Waals potential, which prevents trapping in local energy minima, to the standard Lennard-Jones potential. Following the simulation, the conformations are clustered to obtain the final predictions. Using only the first 100 decoys generated by a fast Fourier transform (FFT)-based rigid-body docking method, our refinement procedure is able to generate near-native structures (interface RMSD <2.5 A) as first model in 14 of 59 cases in a benchmark set. In most cases, clear binding funnels around the native structure can be observed. The results show the potential of Monte Carlo refinement methods and emphasize their applicability for protein-protein docking.  相似文献   
39.
Achieving atomic-level accuracy in comparative protein models is limited by our ability to refine the initial, homolog-derived model closer to the native state. Despite considerable effort, progress in developing a generalized refinement method has been limited. In contrast, methods have been described that can accurately reconstruct loop conformations in native protein structures. We hypothesize that loop refinement in homology models is much more difficult than loop reconstruction in crystal structures, in part, because side-chain, backbone, and other structural inaccuracies surrounding the loop create a challenging sampling problem; the loop cannot be refined without simultaneously refining adjacent portions. In this work, we single out one sampling issue in an artificial but useful test set and examine how loop refinement accuracy is affected by errors in surrounding side-chains. In 80 high-resolution crystal structures, we first perturbed 6-12 residue loops away from the crystal conformation, and placed all protein side chains in non-native but low energy conformations. Even these relatively small perturbations in the surroundings made the loop prediction problem much more challenging. Using a previously published loop prediction method, median backbone (N-Calpha-C-O) RMSD's for groups of 6, 8, 10, and 12 residue loops are 0.3/0.6/0.4/0.6 A, respectively, on native structures and increase to 1.1/2.2/1.5/2.3 A on the perturbed cases. We then augmented our previous loop prediction method to simultaneously optimize the rotamer states of side chains surrounding the loop. Our results show that this augmented loop prediction method can recover the native state in many perturbed structures where the previous method failed; the median RMSD's for the 6, 8, 10, and 12 residue perturbed loops improve to 0.4/0.8/1.1/1.2 A. Finally, we highlight three comparative models from blind tests, in which our new method predicted loops closer to the native conformation than first modeled using the homolog template, a task generally understood to be difficult. Although many challenges remain in refining full comparative models to high accuracy, this work offers a methodical step toward that goal.  相似文献   
40.
Most crystallized homo‐oligomeric ion channels are highly symmetric, which dramatically decreases conformational space and facilitates building homology models (HMs). However, in molecular dynamics (MD) simulations channels deviate from ideal symmetry and accumulate thermal defects, which complicate the refinement of HMs using MD. In this work we evaluate the ability of symmetry constrained MD simulations to improve HMs accuracy, using an approach conceptually similar to Critical Assessment of techniques for protein Structure Prediction (CASP) competition: build HMs of channels with known structure and evaluate the efficiency of proposed methods in improving HMs accuracy (measured as deviation from experimental structure). Results indicate that unrestrained MD does not improve the accuracy of HMs, instantaneous symmetrization improves accuracy but not stability of HMs during subsequent unrestrained MD, while gradually imposing symmetry constraints improves both accuracy (by 5–50%) and stability of HMs. Moreover, accuracy and stability are strongly correlated, making stability a reliable criterion in predicting the accuracy of new HMs. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号