首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2868篇
  免费   337篇
  国内免费   461篇
  3666篇
  2024年   8篇
  2023年   43篇
  2022年   23篇
  2021年   29篇
  2020年   107篇
  2019年   116篇
  2018年   100篇
  2017年   103篇
  2016年   92篇
  2015年   84篇
  2014年   103篇
  2013年   133篇
  2012年   111篇
  2011年   124篇
  2010年   132篇
  2009年   124篇
  2008年   144篇
  2007年   181篇
  2006年   158篇
  2005年   147篇
  2004年   116篇
  2003年   111篇
  2002年   143篇
  2001年   119篇
  2000年   134篇
  1999年   119篇
  1998年   153篇
  1997年   120篇
  1996年   92篇
  1995年   71篇
  1994年   44篇
  1993年   50篇
  1992年   52篇
  1991年   31篇
  1990年   28篇
  1989年   23篇
  1988年   27篇
  1987年   13篇
  1986年   25篇
  1985年   22篇
  1984年   32篇
  1983年   21篇
  1982年   12篇
  1981年   11篇
  1980年   12篇
  1979年   5篇
  1977年   4篇
  1976年   5篇
  1975年   2篇
  1974年   2篇
排序方式: 共有3666条查询结果,搜索用时 15 毫秒
11.
12.
Abstract. The present study investigates the relationships between nitrogen uptake, transpiration, and carbon assimilation. Plants growing on nutrient solution were enclosed for 10–16 d in a growth chamber, where temperature, photon flux density, vapour saturation deficit and CO2 concentration were controlled. One of these factors was modified every 4 to 5 d. Shoot photosynthesis and root and shoot respiration were recorded every half-hour. Nitrogen uptake from the root medium and plant transpiration were measured daily. In most cases, an increase in photon flux density led to increases in transpiration, net daily carbon assimilation, and nitrogen uptake. By modifying transpiration rate without changing photosynthesis (varying vapour saturation deficit), or by modifying transpiration and carbon assimilation in opposite ways (varying CO2 air concentration), it was shown that nitrogen uptake does not follow transpiration, but is linked to the carbon uptake of the plant. When light was increased from low to intermediate levels, the N uptake/C assimilation ratio remained constant. At higher photon flux density, this ratio declined markedly. It is proposed that in the first case, growth is limited by carbohydrate availability, thus any increase in carbon assimilation leads to a proportional increase in nitrogen uptake, in contrast to the second situation where carbohydrates may accumulate in the plant without further nitrogen requirement.  相似文献   
13.
Abstract. Seedlings of Pinus radiata D. Don were grown in growth chambers for 22 weeks with two levels of phosphorus, under either well-watered or water-stressed conditions at CO2 concentrations of either 330 or 660mm3 dm?3. Plant growth, water use efficiency and conductance were measured and the relationship between these and needle photosynthetic capacity, water use efficiency and conductance was determined by gas exchange at week 22. Phosphorus deficiency decreased growth and foliar surface area at both CO2concentrations; however, it only reduced the maximum photosynthetic rates of the needles at 660 mm3 CO2 dm?3 (plants grown and measured at the same CO2 concentration). Water stress reduced growth and foliar surface area at both CO2 concentrations. Increases in needle photosynthetic rates appeared to be partly responsible for the increased growth at high CO2 where phosphorus was adequate. This effect was amplified by accompanying increases in needle production. Phosphorus deficiency inhibited these responses because it severely impaired needle photosynthetic function. The relative increase in growth in response to high CO2 was higher in the periodically water-stressed plants. This was not due to the maintenance of cell volume during drought. Plant water use efficiency was increased by CO2 enrichment due to an increase in dry weight rather than a decrease in shoot conductance and, therefore, transpirational water loss. Changes in needle conductance and water use efficiency in response to high CO2 were generally in the same direction as those at the whole plant level. If the atmospheric CO2 level reaches the predicted concentration of 660 mm3 dm?3 by the end of next Century, then the growth of P. radiata will only be increased in areas where phosphorus nutrition is adequate. Growth will be increased in drought-affected regions but total water use is unlikely to be reduced.  相似文献   
14.
Abstract The regulation of crassulacean acid metabolism (CAM) under controlled environmental conditions has been investigated for two tropical epiphytes, relating plant water and carbon balance to growth form and habitat preference under natural conditions. Aechmea fendleri is restricted to wet, upper montane regions of Trinidad, while A. nudicaulis has a wider distribution extending into more arid regions of the island. Morphological characteristics of these plants are related to habitat preference in terms of leaf succulence (0.44 and 0.94 kg m?2 for the two species respectively) and a distinct layer of water storage parenchyma in A. nudicaulis In contrast, the thinner leaves of A. fendleri contain little water-storage parenchyma and less chlorenchyma per unit area, but the plants have a more open leaf rosette. The two species differ in expression of CAM, since the proportion of respiratory CO2 recycled as part of CAM had been found to be much lower in A. fendleri This study compared the efficiency of water use and role of respiratory CO2 recycling under two PAR regimes (300 and 120 μnol m?2 s?1) and three night temperatures (12, 18 and 25 °C). Dark CO2 uptake rates for both species were comparable to plants in the field (maximum of 2.3 ± 0.2 μmol m?2s?1± SD, n= 3). Total net CO2 uptake at night increased on leaf area basis with temperature for both species under higher PAR, although under the low PAR regime CO2 uptake was maximal at 18 °C. Water-use efficiency (WUE) increased at 18 °C and 25 °C during dark CO2 uptake (Phase I) and also during late afternoon photosynthesis (Phase IV) in both species. For A. fendleri, dawn to dusk changes in titrable acidity (ΔH +) were similar under high and low PAR, although ΔH+ was correlated to night temperature and PAR in A. nudicaulis. The proportion of ΔH+ derived from respiratory CO2 also varied with experimental conditions. Thus percentage recycling was lower in A. fendleri under high PAR (0–10%), but was only reduced at 18 °C under low PAR. Recycling by A. nudicaulis ranged from 32–42% under high PAR, but was also reduced to 6% under low PAR at 18 °C; at 12 °C and 25 °C, recycling was 37% and 52% respectively. Previous studies have suggested a relationship between the proportion of recycling and degree of water stress. This study indicated that CAM as a CO2 concentrating mechanism regulates both water-use efficiency and plant carbon balance in these epiphytes, in response to PAR and night temperature. However, the precise relationship between respiratory processes and the balance between external and internal sources of CO2 is as yet unresolved.  相似文献   
15.
Stomatal sensing of the environment   总被引:1,自引:0,他引:1  
The effects of environmental factors on stomatal behaviour are reviewed and the questions of whether photosynthesis and transpiration eontrol stomata or whether stomata themselves control the rates of these processes is addressed. Light affects stomata directly and indirectly. Light can act directly as an energy source resulting in ATP formation within guard cells via photophosphorylation, or as a stimulus as in the case of the blue light effects which cause guard cell H+ extrusion. Light also acts indirectly on stomata by affecting photosynthesis which influences the intercellular leaf CO2 concentration ( C i). Carbon dioxide concentrations in contact with the plasma membrane of the guard cell or within the guard cell acts directly on cell processes responsible for stomatal movements. The mechanism by which CO2 exerts its effect is not fully understood but, at least in part, it is concerned with changing the properties of guard cell plasma membranes which influence ion transport processes. The C i may remain fairly constant for much of the day for many species which is the result of parallel responses of stomata and photosynthesis to light. Leaf water potential also influences stomatal behaviour. Since leaf water potential is a resultant of water uptake and storage by the plant and transpirational water loss, any factor which affects these processes, such as soil water availability, temperature, atmospheric humidity and air movement, may indirectly affect stomata. Some of these factors, such as temperature and possibly humidity, may affect stomata directly. These direct and indirect effects of environmental factors interact to give a net opening response upon which is superimposed a direct effect of stomatal circadian rhythmic activity.  相似文献   
16.
The protonmotive force in several sulfate-reducing bacteria has been determined by means of radiolabelled membrane-permeant probes (tetraphenyl-phosphonium cation, TPP+, for , and benzoate for pH). In six of ten freshwater strains tested only the pH gradient could be determine, while the membrane potential was not accessible due to nonspecific binding of TPP+. The protonmotive force of the other four strains was between –110 and –155 mV, composed of a membrane potential of –80 to –140 mV and a pH gradient between 0.25 and 0.8 (inside alkaline) at pHout=7. In Desulfobulbus propionicus the pH gradient decreased with rising external pH values. This decrease, however, was compensated by an increasing membrane potential. Sulfate, which can be highly accumulated by the cells, did not affect the protonmotive force, if added in concentrations of up to 4 mM. The highest sulfate accumulation observed (2500-fold), which occurred at external sulfate concentrations below 5 M, could be explained by a symport of three protons per sulfate, if equilibrium with the protonmotive force was assumed. At higher sulfate concentrations the accumulation decreased and suggested an electroneutral symport of two protons per sulfate. At sulfate concentrations above 500 M, the cells stopped sulfate uptake before reaching an equilibrium with the protonmotive force.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - MOPS morpholinopropanesulfonic acid - TPP+ tetraphenylphosphonium cation - EDTA ethylenediaminetetraacetic acid - pH transmembrane pH gradient (pHin-pHout) - transmembrane electrical potential difference  相似文献   
17.
Abstract Chemostat cultures of Synechococcus PCC7942 were established in steady state over ten generations with inorganic carbon-limiting biomass production. The bicarbonate-concentration process was not significantly induced; RuBisCo activity was increased six-fold with decreasing dissolved inorganic carbon concentration and the presence of the 42-kDa cytoplasmic membrane polypeptide was observed but not implicated in the process.  相似文献   
18.
Summary The role of ethylene in embryogenesis of cultured potato anthers was studied indirectly by testing various substances known to affect ethylene formation. The reducing agents ascorbic acid and L-cysteine prevented browning of anther cultures and significantly stimulated embryogenesis. Embryogenesis was also promoted by the use of the ethylene inhibitors AgNO3 and n-propyl-gallate and by the polyamines spermidine and putrescine. The use of the ethylene releasing compound ethrel significantly inhibited embryogenesis.Abbreviations MS Murashige & Skoog - PVP polyvinylpyrrolidone - MW molecular weight - ACC 1-aminocyclopropane-1-carboxylic acid - ethrel 2-chloroethylphosphonic acid (ethephon)  相似文献   
19.
Fine details of the infradian O2 consumption cycles that characterize pupal diapause in flesh flies have been monitored by a newly designed microrespirographic method coupled with an electronically regulated O2 generator. During the 4-5 days between the peaks of elevated O2 consumption, the diapausing pupae maintained a very low and fairly constant respiratory rate (13 microl O2 x g-1.h-1). During the intercalated peaks of increased respiratory metabolism, which lasted an average of 33.6 h to 24-27 degrees C, the average maximum rate of O2 consumption was 86.9 microl.g-1.h-1, a value of 6.7 times higher than the interpeak values. The respiratory peaks started abruptly in some cases while the decline was consistently gradual. During the periods between the peaks there were no discontinuous bursts of CO2 release, a feature common to diapause in many other insects. Diapause was characteristically terminated during a peak of the O2 consumption cycle. At diapause termination O2 consumption remained at the maximum values of the peak for many hours and then gradually increased to levels characteristic of nondiapause development.  相似文献   
20.
Abstract. Studies of the isoprene emission rate in response to changes in photon-flux density and CO2 partial pressure were conducted using a recently developed on-line isoprene analyser combined with a gas exchange system and chlorophyll fluorometer. Upon darkening, the isoprene emission rate from leaves of aspen ( Populus tremuloides Michaux.) began to decline immediately, demonstrating that the internal pool of isoprene, or its precursors, is small and that the instantaneous emission rate is tightly coupled to the rate of synthesis. A post-illumination burst of isoprene was observed within 5 min after darkening and lasted for 15–20 min in four isoprene-emitting species that were examined. In leaves of eucalyptus ( Eucalyptus globulus Labill.), the magnitude of the post-illumination burst was dependent on the photon-flux density that existed before darkening, but not on ambient CO2 partial pressure. The dependence of the post-illumination burst on photon-flux density paralleled that for the steady-state rate of isoprene emission. A step-wise increase in intercellular CO2 partial pressure from 24.5 to 60 Pa resulted in an immediate decrease in isoprene emission rate and non-photochemical fluorescence quenching, but an increase in CO2 assimilation rate. Given the several recent studies that link isoprene emission to chloroplastic processes, the results of this study indicate that the linkage is not dependent on the rate of CO2 flux through the reductive pentose phosphate pathway, but rather on more complex relationships involving metabolites not appreciably influenced by CO2 partial pressure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号