首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11713篇
  免费   873篇
  国内免费   598篇
  2024年   36篇
  2023年   252篇
  2022年   378篇
  2021年   484篇
  2020年   466篇
  2019年   504篇
  2018年   506篇
  2017年   376篇
  2016年   393篇
  2015年   489篇
  2014年   509篇
  2013年   747篇
  2012年   372篇
  2011年   377篇
  2010年   297篇
  2009年   432篇
  2008年   424篇
  2007年   476篇
  2006年   414篇
  2005年   370篇
  2004年   319篇
  2003年   326篇
  2002年   302篇
  2001年   207篇
  2000年   184篇
  1999年   212篇
  1998年   223篇
  1997年   203篇
  1996年   209篇
  1995年   198篇
  1994年   201篇
  1993年   202篇
  1992年   189篇
  1991年   167篇
  1990年   155篇
  1989年   149篇
  1988年   115篇
  1987年   133篇
  1986年   121篇
  1985年   168篇
  1984年   172篇
  1983年   114篇
  1982年   120篇
  1981年   116篇
  1980年   86篇
  1979年   86篇
  1978年   51篇
  1977年   42篇
  1976年   41篇
  1975年   23篇
排序方式: 共有10000条查询结果,搜索用时 19 毫秒
91.
Nitrosomonas europaea is capable of maintaining an anaerobic metabolism, using pyruvate as an electron donor and nitrite as an electron acceptor; utilization of nitrite depends upon supply of both pyruvate and ammonia. The role of ammonia in this reaction was not determined. N europaea also assimilates CO2 anaerobically into cell material in the presence of nitrite (0.5–1.0 mM), pyruvate and ammonia. This reaction was partially inhibited by nitrite which apparently competed with CO2 for reducing power. Anaerobic nitrite respiration is sensitive to ionophores, FCCP being the most effective.Non-standard-abbreviations TCA trichloroacetic acid - FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazon  相似文献   
92.
NAD+-dependent propan-1-ol and propan-2-ol dehydrogenase activities were detected in cell-free extracts of Rhodococcus rhodochrous PNKb1 grown on propane and potential intermediates of propane oxidation. However, it was unclear whether this activity was mediated by one or more enzymes. The isolation of mutants unable to utilize propan-1-ol (alcA-) or propan-2-ol (alcB-) as sole carbon and energy sources demonstrated that these substrates are metabolized by different alcohol dehydrogenases. These mutants were also unable to utilize propane as a growth substrate indicating that both alcohols are intermediates of propane metabolism. Therefore, propane is metabolized by terminal and sub-terminal oxidation pathways. Westernblot analysis demonstrated that a previously purified NAD+-dependent propan-2-ol dehydrogenase (Ashraf and Murrell 1990) was only synthesized after growth on propane and sub-terminal oxidation intermediates (but not acetone), and not propan-1-ol or terminal oxidation intermediates. Therefore, our evidence suggest that another dehydrogenase is involved in the metabolism of propan-1-ol and this agrees with the isolation of the alcA- and alcB- phenotypes. The previously characterized NAD+-dependent propan-2-ol dehydrogenase from R. rhodochrous PNKb1 is highly conserved amongst members of the propane-utilizing Rhodococcus-Nocardia complex.  相似文献   
93.
Guanine nucleotide-, neurotransmitter-, and fluoride-stimulated accumulation of [3H]inositol phosphates ([3H]InsPs) was measured in [3H]inositol-labeled synaptoneurosomes from cerebral cortex of immature (7-day-old) and adult rats, in order to clarify the role of GTP-binding proteins (G-proteins) in modulating phosphoinositide (PtdIns) metabolism during brain development. GTP(S) [Guanosine 5-O-(3-thio)triphosphate] time- and concentration-dependently stimulated PtdIns hydrolysis. Its effect was potentiated by full (carbachol, metacholine) and partial (oxotremorine) cholinergic agonists through activation of muscarinic receptors. The presence of deoxycholate was required to demonstrate agonist protentiation of the guanine nucleotide effect. The response to GTP(S) was higher in adult than in immature rats, while the effect of cholinergic agonists was similar at the two ages examined. At both ages, histamine potentiated the effect of GTP(S), while norepinephrine was ineffective. At both ages, guanosine 5-O-(2-thio)diphosphate [GDP(S)] and pertussis toxin significantly decreased GTP(S)-induced [3H]InsPs formation. The phorbol ester phorbol 12-myristate 13-acetate (PMA), on the other hand, did not inhibit the guanine nucleotide response in synaptoneurosomes from immature rats. NaF mimicked the action of GTP(S) in stimulating PtdIns hydrolysis. Its effect was not affected by carbachol and was highly synergistic with that of AlCl3, according to the concept that fluoroaluminate (AlF4 ) is the active stimulatory species. No quantitative differences were found in the response to these salts between immature and adult animals. These results provide evidence that, in both the immature and adult rat brain, neuroreceptor activation is coupled to PtdIns hydrolysis through modulatory G-proteins.  相似文献   
94.
A short period of global ischemia results in the death of selected subpopulations of neurons. Some advances have been made in understanding events which might contribute to the selectivity of this damage but the cellular changes which culminate in neuronal death remain poorly defined. This overview examines the metabolic state of tissue in the post-ischemic period and the relationship of changes to the development of damage in areas containing ischemia-susceptible neurons. During early recirculation there is substantial recovery of ATP, phosphocreatine and related metabolites in all brain regions. However, this recovery does not signal restitution of normal energy metabolism as reductions of the oxidative metabolism of glucose are seen in many areas and may persist for several days. Furthermore, decreases in pyruvate-supported respiration develop in mitochondria from at least one ischemia-susceptible region at times coincident with the earliest histological evidence of ischemia-induced degeneration. These mitochondrial changes could simply be an early marker of irreversible damage but the available evidence is equally consistent with these contributing to the degenerative process and offering a potential site for therapeutic intervention.Submitted as an Overview article for the volume of Neurochemical Research in honor of Alan N. Davison.  相似文献   
95.
本文是汤佩松教授为北京植物生理学会1992年年会准备的发言稿,并以庆祝中国植物生理学会成立30周年。后“北京年会”因故未开,本刊应汤老要求按原样发表于此(并附英文摘要),以飨读者。  相似文献   
96.
The results of a previous pharmacokinetic study of disopyramide (DP) enantiomers in humans suggested that DP and/or mono-N-desisopropyldisopyramide (MND) may show stereoselective extrarenal elimination. Thus, the present study investigates the biliary elimination of DP and MND enantiomers in three patients who had undergone cholecystectomy for cholelithiasis. DP and MND enantiomers displayed biliary elimination. In both subjects, this elimination pathway showed the same characteristics: (1) biliary elimination of DP and MND was stereoselective, (2) the stereoselectivity was opposite to that observed for the metabolic and renal elimination pathways, i.e., the elimination of the (-)-(R)-enantiomer was higher than that of the (+)-(S)-enantiomer, and (3) biliary elimination of MND was higher than that of DP, for both enantiomers. Estimates of the relative contribution of the biliary clearance in the total clearance of DP and MND indicated that this elimination pathway was secondary, especially for DP. The biliary clearance (expressed as % of total clearance) was 1.9 to 4.0% for (-)-(R)-DP, 1.2 to 1.7% for (+)-(S)-DP, 7.8 to 22.9% for (-)-(R)-MND, and 5.2 to 10.5% for (+)-(S)-MND.  相似文献   
97.
Effects of different concentrations of active ingredient of the herbicide pyramin on metabolic activities of Fusarium solani and Sclerotium rolfsii were examined. High concentrations of this herbicide (1000 and 2000 g mL-1 for F. solani and 100 and 200 g mL-1 for S. rolfsii) had inhibitory effects on the metabolic activities of both fungi. These were demonstrated by significant decreases in growth, and increases in rates of CO2 evolved, O2 consumed and keto acids produced. These were accompanied by increased rates of sugar, nitrate and inorganic phosphorus absorption as well as lowered rates of synthesis of carbohydrates and insoluble nitrogenous (including protein) and phosphorus (including RNA-P and DNA-P) compounds. In addition, rates of excretion of both nitrogen and phosphorus fractions by the mycelial mats were increased.A concentration of 25 g mL-1 exerted little or no effect on the metabolic activities of these fungi, although S. rolfsii was somewhat sensitive to this concentration.  相似文献   
98.
99.
100.
P700 is rapidly, but only transiently photooxidized upon illuminating dark-adapted leaves. Initial oxidation is followed by a reductive phase even under far-red illumination which excites predominantly photosystem (PS) I. In this phase, oxidized P700 is reduced by electrons coming from PSII. Charge separation in the reaction center of PSI is prevented by the unavailability of electron acceptors on the reducing side of PSI. It is subsequently made possible by the opening of an electron gate which is situated between PSI and the electron acceptor phosphoglycerate. Electron acceptors immediately available for reduction while the gate is closed corresponded to 10 nmol · (mg chlorophyll)–1 electrons in geranium leaves, 16 nmol · (mg chlorophyll)–1 in sunflower and 22 nmol · (mg chlorophyll)–1 in oleander. Reduction of NADP during the initial phase of P700 oxidation showed that the electron gate was not represented by ferredoxin-NADP reductase. Availability of ATP indicated that electron flow was not hindered by deactivation of the thylakoid ATP synthetase. It is concluded that NADP-dependent glyceraldehydephosphate dehydrogenase is completely deactivated in the dark and activated in the light. The rate of activation depends on the length of the preceding dark period. As chloroplasts contain both NAD- and NADP-dependent glyceraldehydephosphate dehydrogenases, deactivation of the NADP-dependent enzyme disconnects chloroplast NAD and NADP systems and prevents phosphoglycerate reduction in the dark at the expense of NADPH and ATP which are generated by glucose-6-phosphate oxidation and glycolytic starch breakdown, respectively.Abbreviations Chl chlorophyll - P700 electron donor pigment in the reaction center of photosystem I Cooperation of the Institute of Botany of the University of Würzburg with the Institute of Astrophysics and Atmospheric Physics of the Estonian Academy of Sciences in Tartu was supported by the Deutsche Forschungsgemeinschaft and the Estonian Academy of Sciences. This work was performed within the Sonderforschungsbereich 251 of the University of Würzburg.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号