首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1336篇
  免费   104篇
  国内免费   26篇
  2024年   4篇
  2023年   29篇
  2022年   42篇
  2021年   62篇
  2020年   44篇
  2019年   66篇
  2018年   51篇
  2017年   35篇
  2016年   27篇
  2015年   47篇
  2014年   72篇
  2013年   115篇
  2012年   58篇
  2011年   39篇
  2010年   29篇
  2009年   58篇
  2008年   60篇
  2007年   55篇
  2006年   59篇
  2005年   49篇
  2004年   47篇
  2003年   39篇
  2002年   46篇
  2001年   19篇
  2000年   26篇
  1999年   27篇
  1998年   21篇
  1997年   13篇
  1996年   12篇
  1995年   24篇
  1994年   19篇
  1993年   19篇
  1992年   25篇
  1991年   18篇
  1990年   13篇
  1989年   16篇
  1988年   15篇
  1987年   12篇
  1986年   9篇
  1985年   10篇
  1984年   9篇
  1983年   2篇
  1982年   6篇
  1981年   3篇
  1980年   4篇
  1979年   6篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有1466条查询结果,搜索用时 15 毫秒
101.
Cassava breeding: opportunities and challenges   总被引:4,自引:0,他引:4  
Although cassava is a major food crop, its scientific breeding began only recently compared with other crops. Significant progress has been achieved, particularly in Asia where cassava is used mainly for industrial processes and no major biotic constraints affect its productivity. Cassava breeding faces several limitations that need to be addressed. The heterozygous nature of the crop and parental lines used to generate new segregating progenies makes it difficult to identify parents with good breeding values. Breeding so far has been mainly based on a mass phenotypic recurrent selection. There is very little knowledge on the inheritance of traits of agronomic relevance. Several approaches have been taken to overcome the constraints in the current methodologies for the genetic improvement of cassava. Evaluations at early stages of selection allow for estimates of general combining ability effect or breeding values of parental lines. Inbreeding by sequential self-pollination facilitates the identification of useful recessive traits, either already present in the Manihot gene pool or induced by mutagenesis.  相似文献   
102.
Herrnstadt C  Howell N 《Mitochondrion》2004,4(5-6):791-798
More than 75 human diseases have been associated with mitochondrial dysfunction, and many of these are directly caused by overtly pathogenic mutations in the mitochondrial genome (mtDNA). In addition, there have been a number of reports that posit a different, subtler role for mtDNA substitutions in the disease process. As we review here, mtDNA evolution has resulted in the distribution of sequences into continent-specific haplogroups, which are defined by a relatively small number of polymorphisms. Thus, mtDNA sequences can be assigned to European, African, or Asian/Native American haplogroups. There are numerous reports that various diseases are haplogroup-associated, and it has been suggested that some of these haplogroup-associated polymorphisms act as risk factors in these disorders. It has also been suggested that there are haplogroup-associations for aging. As we note here, however, such associations have usually been observed only in single studies and it is difficult to draw broad conclusions on the basis of the available evidence. At a minimum, we suggest that, a haplogroup-group association must be detected in multiple subpopulations or in a large, carefully controlled population survey.  相似文献   
103.
Collagen II fibrils are a critical structural component of the extracellular matrix of cartilage providing the tissue with its unique biomechanical properties. The self-assembly of collagen molecules into fibrils is a spontaneous process that depends on site-specific binding between specific domains belonging to interacting molecules. These interactions can be altered by mutations in the COL2A1 gene found in patients with a variety of heritable cartilage disorders known as chondrodysplasias. Employing recombinant procollagen II, we studied the effects of R75C or R789C mutations on fibril formation. We determined that both R75C and R789C mutants were incorporated into collagen assemblies. The effects of the R75C and R789C substitutions on fibril formation differed significantly. The R75C substitution located in the thermolabile region of collagen II had no major effect on the fibril formation process or the morphology of fibrils. In contrast, the R789C substitution located in the thermostable region of collagen II caused profound changes in the morphology of collagen assemblies. These results provide a basis for identifying pathways leading from single amino acid substitutions in collagen II to changes in the structure of individual fibrils and in the organization of collagenous matrices.  相似文献   
104.
Genetic Defects as Tumor Markers   总被引:1,自引:0,他引:1  
Carcinogenesis is long-term multistep accumulation of defects of genes responsible for cell division, DNA repair, and apoptosis. The functions of these genes are known both for norm and for pathologies caused by their damage and resulting in asocial cell behavior. Owing to the recent progress in studying the mechanisms of carcinogenesis, some genetic defects may be considered from the applied point of view (as tumor markers rather than as pathogenetic factors) and employed in diagnostics. Thus detection of mutant alleles in biological fluids (e.g., beyond the tumor) suggests higher risk of carcinogenesis. Genetic defects are a new class of tumor markers and have a substantial diagnostic potential. In contrast to known protein markers (-fetoprotein, etc.) used in clinical practice, DNA markers are oncospecific (as these are in direct cause-and-effect relationships with carcinogenesis) and universal (as there is not a single tumor cell without a genetic defect). Analysis of DNA markers may be employed not only in diagnostics or tumor growth monitoring (assessment of treatment efficiency, early detection of recurrence or metastasis), but also (prospectively) in screening (tumor detection at the presymptomatic stage, identification of high-risk groups). Theoretical grounds, prospects, problems, and methods of this new field are considered.  相似文献   
105.
Filipski J  Mucha M 《Gene》2002,300(1-2):63-68
Recent localization of cohesin association regions along the yeast chromatin fibre suggests that compositional variability of DNA in yeast is related to the function and organization of the chromosomal loops. The bases of the loops, where the chromatin fibre is attached to the chromosomal axis, are AT-rich, bind cohesin, and are flanked by genes transcribed convergently. The hotspots of meiotic recombination are mainly found in the GC-rich parts of the loops, ‘external’ with respect to the chromosomal axis, frequently in the vicinity of the promoters of divergently transcribed genes. There are two possible reasons why the regions of the hotspots of recombination were enriched in GC content during evolution. One is a biased repair of recombination intermediates, and the second is a selective advantage due to an increased chromatin accessibility, which may have the carriers of GC-enriched alleles over the carriers of AT-rich alleles.  相似文献   
106.
107.
Pazos F  Valencia A 《Proteins》2002,47(2):219-227
Deciphering the interaction links between proteins has become one of the main tasks of experimental and bioinformatic methodologies. Reconstruction of complex networks of interactions in simple cellular systems by integrating predicted interaction networks with available experimental data is becoming one of the most demanding needs in the postgenomic era. On the basis of the study of correlated mutations in multiple sequence alignments, we propose a new method (in silico two-hybrid, i2h) that directly addresses the detection of physically interacting protein pairs and identifies the most likely sequence regions involved in the interactions. We have applied the system to several test sets, showing that it can discriminate between true and false interactions in a significant number of cases. We have also analyzed a large collection of E. coli protein pairs as a first step toward the virtual reconstruction of its complete interaction network.  相似文献   
108.
The maintenance of mobile DNA sequences in clonal organisms has been seen as a paradox. If selfish mobile sequences spread through genomes only by overreplication in transposition, then sexuality is necessary for their spread through populations. The persistence of bacterial transposable elements without obvious dominant selectable markers has previously been explained by horizontal transfer. However, advantageous insertions of mobile DNAs are known in bacteria. Here we model maintenance of an otherwise selfish mobile DNA element in a clonal species in which selection for null mutations occurs during one of two temporally alternating environments. Large areas of parameter space permit maintenance of mobile DNAs where, without selection, they would have gone extinct. Horizontal transfer diminishes, rather than enhances, mean copy number. In finite populations, effective population sizes are greatly reduced by selective sweeps, and mean copy number can be increased as the reduced variance in copy number results in reduced selection.  相似文献   
109.
In certain cases, predicted by evolutionary theory of sex-allocation and confirmed by empirical evidence, animals adaptively change their progeny sex-ratio according to individual circumstances. Here we argue that a similar response of offspring sex-ratio must exist in relation to genetic variation of mothers' mitochondria, as a consequence of maternal inheritance of these organelles and of their influence on fitness resulting from their crucial role in metabolism. In fact, a mathematical analysis of evolutionary dynamics of sex-allocation mutants demonstrates that natural selection promotes an evolutionarily stable allocation policy where mothers with defective mitochondria generate only sons, while those with optimal mitochondria have female biased progenies.  相似文献   
110.
The relationship between probability of survival and the number of deleterious mutations in the genome is investigated using three different models of highly redundant systems that interact with a threatening environment. Model one is a system that counters a potentially lethal infection; it has multiple identical components that act in sequence and in parallel. Model two has many different overlapping components that provide three-fold coverage of a large number of vital functions. The third model is based on statistical decision theory: an ideal detector, following an optimum decision strategy, makes crucial decisions in an uncertain world. The probability of a fatal error is reduced by a redundant sampling system, but the chance of error rises as the system is impaired by deleterious mutations. In all three cases the survival profile shows a synergistic pattern in that the probability of survival falls slowly and then more rapidly. This is different than the multiplicative or independent survival profile that is often used in mathematical models. It is suggested that a synergistic profile is a property of redundant systems. Model one is then used to study the conservation of redundancy during sexual and asexual reproduction. A unicellular haploid organism reproducing asexually retains redundancy when the mutation rate is very low (0001 per cell division), but tends to lose high levels of redundancy if the mutation rate is increased (001 to 01 per cell division). If a similar unicellular haploid organism has a sexual phase then redundancy is retained for mutation rates between 0001 and 01 per cell division. The sexual organism outgrows the asexual organism when the above mutation rates apply. If they compete for finite resources the asexual organism will be extinguished. Variants of the sexual organism with increased redundancy will outgrow those with lower levels of redundancy and the sexual process facilitates the evolution of more complex forms. There is a limit to the extent that complexity can be increased by increasing the size of the genome and in asexual organisms this leads to progressive accumulation of mutations with loss of redundancy and eventual extinction. If complexity is increased by using genes in new combinations, the asexual form can reach a stable equilibrium, although it is associated with some loss of redundancy. The sexual form, by comparison, can survive, with retention of redundancy, even if the mutation rate is above one per generation. The conservation and evolution of redundancy, which is essential for complexity, depends on the sexual process of reproduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号