首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7929篇
  免费   448篇
  国内免费   931篇
  9308篇
  2024年   8篇
  2023年   64篇
  2022年   107篇
  2021年   161篇
  2020年   174篇
  2019年   170篇
  2018年   153篇
  2017年   164篇
  2016年   192篇
  2015年   169篇
  2014年   301篇
  2013年   550篇
  2012年   313篇
  2011年   355篇
  2010年   323篇
  2009年   425篇
  2008年   494篇
  2007年   457篇
  2006年   422篇
  2005年   396篇
  2004年   345篇
  2003年   341篇
  2002年   280篇
  2001年   275篇
  2000年   209篇
  1999年   234篇
  1998年   209篇
  1997年   173篇
  1996年   153篇
  1995年   176篇
  1994年   197篇
  1993年   171篇
  1992年   169篇
  1991年   127篇
  1990年   97篇
  1989年   95篇
  1988年   113篇
  1987年   106篇
  1986年   73篇
  1985年   66篇
  1984年   78篇
  1983年   41篇
  1982年   52篇
  1981年   34篇
  1980年   26篇
  1979年   31篇
  1978年   15篇
  1977年   5篇
  1976年   11篇
  1972年   3篇
排序方式: 共有9308条查询结果,搜索用时 0 毫秒
61.
The S 3 allele of the S gene has been cloned from Papaver rhoeas cv. Shirley. The sequence predicts a hydrophilic protein of 14.0 kDa, showing 55.8% identity with the previously cloned S 1 allele, preceded by an 18 amino acid signal sequence. Expression of the S 3 coding region in Escherichia coli produced a form of the protein, denoted S3e, which specifically inhibited S3 pollen in an in vitro bioassay. The recombinant protein was ca. 0.8 kDa larger than the native stigmatic form, indicating post-translational modifications in planta, as was previously suggested for the S1 protein. In contrast to other S proteins identified to date, S3 protein does not appear to be glycosylated. Of particular significance is the finding that despite exhibiting a high degree of sequence polymorphism, secondary structure predictions indicate that the S1 and S3 proteins may adopt a virtually identical conformation. Sequence analysis also indicates that the P. rhoeas S alleles share some limited homology with the SLG and SRK genes from Brassica oleracea. Previously, cross-classification of different populations of P. rhoeas had revealed a number of functionally identical alleles. Probing of western blots of stigma proteins from plants derived from a wild Spanish population which contained an allele functionally identical to the Shirley S 3 allele with antiserum raised to S3e, revealed a protein (S 3 s) which was indistinguishable in pI and M r from that in the Shirley population. A cDNA encoding S 3 s was isolated, nucleotide sequencing revealing a coding region with 99.4% homology with the Shirley-derived clone at the DNA level, and 100% homology at the amino acid level.  相似文献   
62.
Two enzymes, one NADPH-dependent and another NADH-dependent which catalyze the reduction of methylglyoxal to acetol have been isolated and substantially purified from crude extracts of Escherichia coli K12 cells. Substrate specificity and formation of acetol as the reaction product by both the enzymes, reversibility of NADH-dependent enzyme with alcohols as substrates and inhibitor study with NADPH-dependent enzyme indicate that NADPH-dependent and NADH-dependent enzymes are identical with an aldehyde reductase (EC 1.1.1.2) and alcohol dehydrogenase (EC 1.1.1.1) respectively. The Km for methylglyoxal have been determined to be 0.77 mM for NADPH-dependent and 3.8 mM for NADH-dependent enzyme. Stoichiometrically equimolar amount of acetol is formed from methylglyoxal by both NADPH- and NADH-dependent enzymes. In phosphate buffer, both the enzymes are active in the pH range of 5.8–6.6 with no sharp pH optimum. Molecular weight of both the enzymes were found to be 100,000 ± 3,000 by gel filtration on a Sephacryl S-200 column. Both NADPH- and NADH-dependent enzymes are sensitive to sulfhydryl group reagents.  相似文献   
63.
64.
Investigations of biological effects of prolonged elevation of growth hormone in animals such as mice and rats require large amounts of mouse and rat growth hormone (GH) materials. As an alternative to scarce and expensive pituitary derived materials, both mouse and rat GH were expressed in NSO murine myeloma cells transfected with a vector containing the glutamine synthetase (GS) gene and two copies of mouse or rat GH cDNA. For optimal expression, the mouse GH vector also contained sequences for targeting integration by homologous recombination. Fed-batch culture processes for such clones were developed using a serum-free, glutamine-free medium and scaled up to 250 L production scale reactors. Concentrated solutions of proteins, amino acids and glucose were fed periodically to extend cell growth and culture lifetime, which led to an increase in the maximum viable cell concentration to 3.5×109 cells/L and an up to 10 fold increase in final mouse and rat rGH titers in comparison with batch cultures. For successful scale up, similar culture environmental conditions were maintained at different scales, and specific issues in large scale reactors such as balancing oxygen supply and carbon dioxide removal, were addressed. Very similar cell growth and protein productivity were obtained in the fed-batch cultures at different scales and in different production runs. The final mouse and rat rGH titers were approximately 580 and 240 mg/L, respectively. During fed-batch cultures, the cell growth stage transition was accompanied by a change in cellular metabolism. The specific glucose consumption rate decreased significantly after the transition from the growth to stationary stage, while lactate was produced in the exponential growth stage and became consumed in the stationary stage. This was roughly coincident with the beginning of ammonia and glutamate accumulation at the entry of cells into the stationary stage as the result of a reduced glutamine consumption and periodic nutrient additions.  相似文献   
65.
实验中观察到,用MUG培养基对植物药中的大肠杆菌定量时多发生荧光猝灭现象,影响检测结果。本文对此现象产生的原因与克服方法进行了系统的考察,发现以一种简便的转接方法可排除植物药介质对菌检的干扰。该方法由两组检验系列构成,当怀疑正常稀释系列(第一系列)40h培养液的荧光结果可能因猝灭现象呈假阴性时,立即分别将该系列的1—3号管培养液以0.5ml的接种量转接入新鲜的MUG培养基(第二系列),重新培养24h,荧光猝灭现象即可克服。综合两系列的荧光、产气和吲哚三项生化特征得出检品中大肠杆菌含量。实际应用表明,此法能显著提高使用该培养基时菌检结果的可靠性。  相似文献   
66.
Summary Gene transfer techniques can be used to encode the production of a polypeptide product, such as human growth hormone (hGH), that is missing in an acquired or inherited disease state such as growth hormone deficiency. In one model system, engineered C2C12 myoblasts are injected intramuscularly into a mouse and subsequently secrete hGH into the circulation. In this regard, a gene-expression regulatory system that functions in myoblasts would be of interest. We demonstrate that theEscherichia coli lac operon system can be used to stringently regulate the expression of hGH in engineered C2C12 myoblasts in tissue culture. A DNA segment encoding hGH was linked to a DNA segment containing an SV40 enhancer and promoter. The latter components were positioned between two syntheticlac operators.Lac repressor expression was driven by a simian cytomegalovirus promoter. In transient co-transfection assays, hGH expression from cultured C2C12 myoblasts could be modulated up to 60-fold (P = 0.002) with the inducing agent, isopropyl-β-d-thiogalactoside (IPTG). In the absence of IPTG, hGH expression was almost fully repressed. These results show that the components of theE. coli lac operon provide a stringent regulatory system for use in myoblasts. The system might prove to be useful for the regulation of transferred genes in animals.  相似文献   
67.
Summary The glycosylation and subsequent processing of native and recombinant glycoproteins expressed in established insect cell lines and insect larvae were compared. TheSpodoptera frugiperda (Sf21) andTrichoplusia ni (TN-368 and BTI-Tn-5B1-4) cell lines possessed several intrinsic glycoproteins that are modified with both N- and O-linked oligosaccharides. The N-linked oligosaccharides were identified as both the simple (high mannose) and complex (containing sialic acid) types. Similarly, theT. ni larvae also possessed intrinsic glycoproteins that were modified with O-linked and simple and complex N-linked oligosaccharides. Additionally, human placental, secreted alkaline phosphatase (SEAP) produced during replication of a recombinant baculovirus inT. ni larvae was modified with complex oligosaccharide having sialic acid linked α(2–6) to galactose.  相似文献   
68.
ABSTRACT. Three species of Entamoeba have been grown in axenic culture for the first time. In two cases, novel methods for adapting the organisms to growth without bacteria were employed. While E. ranarum was axenized by the classic technique of Diamond, from a monoxenic culture with Trypanosoma cruzi as the associate, both E. dispar and E. insolita were first grown in axenic culture medium supplemented with lethally irradiated bacteria. From there, E. insolita was axenized directly, but E. dispar initially required the presence of fixed bacteria. After prolonged culture under this technically axenic but unwieldy culture system, E. dispar was eventually adapted to growth in the absence of added bacteria.  相似文献   
69.
Root nodule bacteria and Escherichia coli show an adaptive acid tolerance response when grown under mildly acidic conditions. This is defined in terms of the rate of cell death upon exposure to acid shock at pH 3.0 and expressed in terms of a decimal reduction time, D. The D values varied with the strain and the pH of the culture medium. Early exponential phase cells of three strains of Rhizobium leguminosarum (WU95, 3001 and WSM710) had D values of 1, 6 and 5 min respectively when grown at pH 7.0; and D values of 5, 20 and 12 min respectively when grown at pH 5.0. Exponential phase cells of Rhizobium tropici UMR1899, Bradyrhizobium japonicum USDA110 and peanut Bradyrhizobium sp. NC92 were more tolerant with D values of 31, 35 and 42 min when grown at pH 7.0; and 56, 86 and 68 min when grown at pH 5.0. Cells of E. coli UB1301 in early exponential phase at pH 7.0 had a D value of 16 min, whereas at pH 5.0 it was 76 min. Stationary phase cells of R. leguminosarum and E. coli were more tolerant (D values usually 2 to 5-fold higher) than those in exponential phase. Cells of R. leguminosarum bv. trifolii 3001 or E. coli UB1301 transferred from cultures at pH. 7.0 to medium at pH 5.0 grew immediately and induced the acid tolerance response within one generation. This was prevented by the addition of chloramphenicol. Acidadapted cells of Rhizobium leguminosarum bv. trifolii WU95 and 3001; or E. coli UB1301, M3503 and M3504 were as sensitive to UV light as those grown at neutral pH.  相似文献   
70.
The simultaneous growth and product formation in a microbial culture is an important feature of several laboratory, industrial, and environmental bioprocesses. Metabolic burden associated with product formation in these bioprocesses may lead to growth advantage of a nonproducing mutant leading to a loss of the producing population over time. A simple population dynamics model demonstrates the extreme sensitivity of population stability to the engineered productivity of a strain. Here we use flux balance analysis to estimate the effects of the metabolic burden associated with product secretion on optimal growth rates. Comparing the optimal growth rates of the producing and nonproducing strains under a given processing condition allows us to predict the population stability. In order to increase stability of an engineered strain, we determine processing conditions that simultaneously maximize the growth rate of the producing population while minimizing the growth rate of a nonproducing population. Using valine, tryptophan, and lysine production as specific examples, we demonstrate that although an appropriate choice of oxygenation may increase culture longevity more than twofold, total production as governed by economic criterion can be increased by several orders of magnitude. Choice of optimal nutrient and oxygen supply rates to enhance stability is important both for strain screening as well as for culture of engineered strains. Appropriate design of the culture environment can thus be used to enhance the productivity of bioprocesses that use engineered production strains. (c) 1994 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号