首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   442篇
  免费   23篇
  国内免费   5篇
  2023年   1篇
  2022年   4篇
  2021年   5篇
  2020年   2篇
  2019年   9篇
  2018年   13篇
  2017年   5篇
  2016年   9篇
  2015年   12篇
  2014年   24篇
  2013年   47篇
  2012年   16篇
  2011年   24篇
  2010年   26篇
  2009年   31篇
  2008年   35篇
  2007年   38篇
  2006年   36篇
  2005年   38篇
  2004年   28篇
  2003年   25篇
  2002年   14篇
  2001年   10篇
  2000年   11篇
  1999年   4篇
  1993年   1篇
  1989年   1篇
  1987年   1篇
排序方式: 共有470条查询结果,搜索用时 203 毫秒
11.
We have evaluated the sizes and lifetimes of rafts in the plasma membrane from the existing literature, with a special attention paid to their intrinsically broad distributions and the limited time and space scales that are covered by the observation methods used for these studies. Distinguishing the rafts in the steady state (reserve rafts) from those after stimulation or unintentional crosslinking of raft molecules (stabilized receptor-cluster rafts) is critically important. In resting cells, the rafts appear small and unstable, and the consensus now is that their sizes are smaller than the optical diffraction limit (250 nm). Upon stimulation, the raft-preferring receptors are clustered, inducing larger, stabilized rafts, probably by coalescing small, unstable rafts or cholesterol-glycosphingolipid complexes in the receptor clusters. This receptor-cluster-induced conversion of raft types may be caused by suppression of alkyl chain isomerization and the lipid lateral diffusion in the cluster, with the aid of exclusion of cholesterol from the bulk domain and the boundary region of the majority of transmembrane proteins. We critically inspected the possible analogy to the boundary lipid concept. Finally, we propose a hypothesis for the coupling of GPI-anchored receptor signals with lipid-anchored signaling molecules in the inner-leaflet raft.  相似文献   
12.
Membrane domains in lymphocytes - from lipid rafts to protein scaffolds   总被引:1,自引:0,他引:1  
Lateral compartmentalization of the plasma membrane into domains is a key feature of immune cell activation and subsequent immune effector functions. Here, we will review the high diversity of membrane domains, ranging from elementary lipid rafts, envisioned as dynamic and small domains (in the tens of nm), to relatively stable μm-scale membrane domains, which form the immunologic synapse of T lymphocytes. We will discuss the relationship between these different types of plasma membrane domains and how raft lipid- and protein-controlled interactions and cell biological processes cooperate to generate functional domains that mediate lymphocyte activity.  相似文献   
13.
The protective antigen (PA) of the anthrax toxin binds to a cell surface receptor and thereby allows lethal factor (LF) to be taken up and exert its toxic effect in the cytoplasm. Here, we report that clustering of the anthrax toxin receptor (ATR) with heptameric PA or with an antibody sandwich causes its association to specialized cholesterol and glycosphingolipid-rich microdomains of the plasma membrane (lipid rafts). We find that although endocytosis of ATR is slow, clustering it into rafts either via PA heptamerization or using an antibody sandwich is necessary and sufficient to trigger efficient internalization and allow delivery of LF to the cytoplasm. Importantly, altering raft integrity using drugs prevented LF delivery and cleavage of cytosolic MAPK kinases, suggesting that lipid rafts could be therapeutic targets for drugs against anthrax. Moreover, we show that internalization of PA is dynamin and Eps15 dependent, indicating that the clathrin-dependent pathway is the major route of anthrax toxin entry into the cell. The present work illustrates that although the physiological role of the ATR is unknown, its trafficking properties, i.e., slow endocytosis as a monomer and rapid clathrin-mediated uptake on clustering, make it an ideal anthrax toxin receptor.  相似文献   
14.
MAL is an integral protein component of the machinery for apical transport in epithelial Madin-Darby canine kidney (MDCK) cells. To maintain its distribution, MAL cycles continuously between the plasma membrane and the Golgi complex. The clathrin-mediated route for apical internalization is known to differ from that at the basolateral surface. Herein, we report that MAL depends on the clathrin pathway for apical internalization. Apically internalized polymeric Ig receptor (pIgR), which uses clathrin for endocytosis, colocalized with internalized MAL in the same apical vesicles. Time-lapse confocal microscopic analysis revealed cotransport of pIgR and MAL in the same endocytic structures. Immunoelectron microscopic analysis evidenced colabeling of MAL with apically labeled pIgR in pits and clathrin-coated vesicles. Apical internalization of pIgR was abrogated in cells with reduced levels of MAL, whereas this did not occur either with its basolateral entry or the apical internalization of glycosylphosphatidylinositol-anchored proteins, which does not involve clathrin. Therefore, MAL is critical for efficient clathrin-mediated endocytosis at the apical surface in MDCK cells.  相似文献   
15.
Cell membrane exposure to oxysterols, such as 22-hydroxycholesterol (22-OHC), has previously been shown to induce a suppressive effect on lymphocyte activation. Based on our previous findings that chemokine binding was significantly inhibited by the extraction of membrane cholesterol, we sought to assess the effects of 22-OHC treatment on chemokine ligand-binding and receptor activity. Our results revealed that 22-OHC, but not nonoxidized cholesterol, significantly reduced the binding of both SDF-1alpha and MIP-1beta to human T-cell lines and PBMCs within 1 h of treatment. Incubating the treated cells at 37 degrees C for 1 h reversed a majority of the inhibitory effects on chemokine binding. 22-OHC also inhibited intracellular calcium mobilization and cell migration in response to SDF-1alpha treatment. Interestingly, while the presence of oxysterols in cell membranes significantly inhibits chemokine receptor function, this inhibitory effect does not involve alterations in receptor conformation, expression, or a direct antagonism of chemokine binding. We propose here a novel mechanism for oxysterol-mediated inhibition of chemokine receptor function and the implications for the presence of oxysterols on immune cells.  相似文献   
16.
The B cell antigen receptor (BCR) is a member of an important family of multichain immune recognition receptors, which are complexes composed of ligand-binding domains associated with signal-transduction complexes. The signaling components of these receptors have no inherent kinase activity but become tyrosine phosphorylated in their cytoplasmic domains by Src-family kinases upon oligomerization, thus initiating signaling cascades. The BCR is unique in this family in that, in addition to its signaling function, it also serves to deliver antigen to intracellular compartments where the antigen is processed and presented bound to major histocompatibility complex (MHC) class II molecules. Recent evidence indicates that both the signaling and antigen-trafficking functions of the BCR are regulated by cholesterol- and sphingolipid-rich plasma membrane microdomains termed rafts. Indeed, upon oligomerization, the BCR translocates into rafts that concentrate the Src-family kinase Lyn and is subsequently internalized directly from the rafts. Thus, translocation into rafts allows the association of the oligomerized BCR with Lyn and the initiation of both signaling and trafficking. Significantly, the access of the BCR to rafts appears to be controlled by a variety of B lymphocyte co-receptors, as well as factors including the developmental state of the B cell and viral infection. Thus, the translocation of the immune receptors into signaling-competent microdomains may represent a novel mechanism to initiate and regulate immune-cell activation.  相似文献   
17.
PrP(C) is a glycosylphosphatidylinositol-anchored protein expressed in neurons as well as in the cells of several peripheral tissues. Although the normal function of PrP(C) remains unknown, a conformational isoform called PrP(Sc) (scrapie) has been proposed to be the infectious agent of transmissible spongiform encephalopathies in animals and humans. Where and how the PrP(C) to PrP(Sc) conversion occurs in the cells is not yet known. Therefore, dissecting the intracellular trafficking of the wild-type prion protein, as well as of the scrapie isoform, can be of major relevance to the pathogenesis of the diseases. In this report we have analyzed the exocytic pathway of transfected mouse PrP(C) in thyroid and kidney polarized epithelial cells. In contrast to the majority of glycosylphosphatidylinositol-anchored proteins, we found that PrP(C) is localized mainly on the basolateral domain of the plasma membrane of both cell lines. This is reminiscent of the predominant somatodendritic localization found in neurons. However, similarly to apical glycosylphosphatidylinositol-proteins, PrP(C) associates with detergent-resistant microdomains, which have been suggested to have a role in apical sorting of glycosylphosphatidylinositol-proteins, as well as in the conversion process of PrP(C) to PrP(Sc). In order to discriminate whether detergent-resistant microdomains have a direct role in PrP(Sc) conversion, or whether they are involved in the transport of the protein to the site of its conversion, we have examined the effect of disruption of detergent-resistant microdomain association on PrP(C) intracellular traffic. Consistent with the unusual basolateral localization of this glycosylphosphatidylinositol-linked protein, our data exclude a classical role for detergent-resistant microdomains in the post-trans-Golgi network sorting and transport of PrP(C) to the plasma membrane.  相似文献   
18.
The plant toxin ricin binds to both glycosphingolipids and glycoproteins with terminal galactose and is transported to the Golgi apparatus in a cholesterol-dependent manner. To explore the question of whether glycosphingolipid binding of ricin or glycosphingolipid synthesis is essential for transport of ricin from the plasma membrane to the Golgi apparatus, retrogradely to the endoplasmic reticulum or for translocation of the toxin to the cytosol, we have investigated the effect of ricin and the intracellular transport of this toxin in a glycosphingolipid-deficient mouse melanoma cell line (GM95), in the same cell line transfected with ceramide glucosyltransferase to restore glycosphingolipid synthesis (GM95-CGlcT-KKVK) and in the parental cell line (MEB4). Ricin transport to the Golgi apparatus was monitored by quantifying sulfation of a modified ricin molecule, and toxicity was studied by measuring protein synthesis. The data reveal that ricin is transported retrogradely to the Golgi apparatus and to the endoplasmic reticulum and translocated to the cytosol equally well and apparently at the same rate in cells with and without glycosphingolipids. Importantly cholesterol depletion reduced endosome to Golgi transport of ricin even in cells without glycosphingolipids, demonstrating that cholesterol is required for Golgi transport of ricin bound to glycoproteins. The rate of retrograde transport of ricin was increased strongly by monensin and the lag time for intoxication was reduced both in cells with and in those without glycosphingolipids. In conclusion, neither glycosphingolipid synthesis nor binding of ricin to glycosphingolipids is essential for cholesterol-dependent retrograde transport of ricin. Binding of ricin to glycoproteins is sufficient for all transport steps required for ricin intoxication.  相似文献   
19.
Paranodin/contactin-associated protein (caspr) is a transmembrane glycoprotein of the neurexin superfamily that is highly enriched in the paranodal regions of myelinated axons. We have investigated the role of its association with F3/contactin, a glycosylphosphatidyl inositol (GPI)-anchored neuronal adhesion molecule of the Ig superfamily. Paranodin was not expressed at the cell surface when transfected alone in CHO or neuroblastoma cells. Cotransfection with F3 resulted in plasma membrane delivery of paranodin, as analyzed by confocal microscopy and cell surface biotinylation. The region that mediates association with paranodin was mapped to the Ig domains of F3 by coimmunoprecipitation experiments. The association of paranodin with F3 allowed its recruitment to Triton X-100-insoluble microdomains. The GPI anchor of F3 was necessary, but not sufficient for surface expression of paranodin. F3-Ig, a form of F3 deleted of the fibronectin type III (FNIII) repeats, although GPI-linked and expressed at the cell surface, was not recovered in the microdomain fraction and was unable to promote cell surface targeting of paranodin. Thus, a cooperative effect between the GPI anchor, the FNIII repeats, and the Ig regions of F3 is required for recruitment of paranodin into lipid rafts and its sorting to the plasma membrane.  相似文献   
20.
Observing FcepsilonRI signaling from the inside of the mast cell membrane   总被引:8,自引:0,他引:8  
We have determined the membrane topography of the high-affinity IgE receptor, FcstraightepsilonRI, and its associated tyrosine kinases, Lyn and Syk, by immunogold labeling and transmission electron microscopic (TEM) analysis of membrane sheets prepared from RBL-2H3 mast cells. The method of Sanan and Anderson (Sanan, D.A., and R.G.W. Anderson. 1991. J. Histochem. Cytochem. 39:1017-1024) was modified to generate membrane sheets from the dorsal surface of RBL-2H3 cells. Signaling molecules were localized on the cytoplasmic face of these native membranes by immunogold labeling and high-resolution TEM analysis. In unstimulated cells, the majority of gold particles marking both FcepsilonRI and Lyn are distributed as small clusters (2-9 gold particles) that do not associate with clathrin-coated membrane. Approximately 25% of FcepsilonRI clusters contain Lyn. In contrast, there is essentially no FcepsilonRI-Syk colocalization in resting cells. 2 min after FcepsilonRI cross-linking, approximately 10% of Lyn colocalizes with small and medium-sized FcepsilonRI clusters (up to 20 gold particles), whereas approximately 16% of Lyn is found in distinctive strings and clusters at the periphery of large receptor clusters (20-100 gold particles) that form on characteristically osmiophilic membrane patches. While Lyn is excluded, Syk is dramatically recruited into these larger aggregates. The clathrin-coated pits that internalize cross-linked receptors bud from membrane adjacent to the Syk-containing receptor complexes. The sequential association of FcstraightepsilonRI with Lyn, Syk, and coated pits in topographically distinct membrane domains implicates membrane segregation in the regulation of FcstraightepsilonRI signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号