首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10522篇
  免费   1875篇
  国内免费   2552篇
  2024年   86篇
  2023年   377篇
  2022年   277篇
  2021年   307篇
  2020年   585篇
  2019年   599篇
  2018年   698篇
  2017年   660篇
  2016年   648篇
  2015年   661篇
  2014年   685篇
  2013年   861篇
  2012年   539篇
  2011年   601篇
  2010年   414篇
  2009年   561篇
  2008年   526篇
  2007年   567篇
  2006年   553篇
  2005年   485篇
  2004年   406篇
  2003年   408篇
  2002年   397篇
  2001年   329篇
  2000年   276篇
  1999年   277篇
  1998年   224篇
  1997年   189篇
  1996年   185篇
  1995年   195篇
  1994年   188篇
  1993年   149篇
  1992年   175篇
  1991年   112篇
  1990年   107篇
  1989年   79篇
  1988年   87篇
  1987年   55篇
  1986年   54篇
  1985年   68篇
  1984年   51篇
  1983年   27篇
  1982年   53篇
  1981年   33篇
  1980年   33篇
  1979年   27篇
  1978年   22篇
  1977年   13篇
  1976年   18篇
  1958年   7篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
51.
Abstract Chemostat cultures of Synechococcus PCC7942 were established in steady state over ten generations with inorganic carbon-limiting biomass production. The bicarbonate-concentration process was not significantly induced; RuBisCo activity was increased six-fold with decreasing dissolved inorganic carbon concentration and the presence of the 42-kDa cytoplasmic membrane polypeptide was observed but not implicated in the process.  相似文献   
52.
The direct enantiomeric separation of a series of beta-blockers has been carried out on two chiral stationary phases (CSPs) derived from 3,5-dinitrobenzoyl tyrosine: the commercially available ChyRoSine-A and a recent improved version of this CSP. Using supercritical fluid chromatography (SFC), facile separations are achieved (1.1 less than Rs less than 7) within short analysis times. The parameters affecting the enantioselectivity (temperature, pressure, mobile phase nature, solute structure) have been investigated. The optimal mobile phase consists in a mixture of carbon dioxide-methanol-propylamine at 25 degrees C. The solute structure has a great influence on the enantioselectivity. For instance, both amine and hydroxyl protons are necessary for chiral discrimination to occur. Furthermore, the steroselectivity value is directly connected to the amine substituent steric bulkiness. Surprisingly, these solutes are poorly resolved using normal phase liquid chromatography (NPLC). Accordingly, the specific influence of carbon dioxide on the enantiomeric separation of 1,2-amino-alcohols have been investigated using various techniques such as nuclear magnetic resonance (NMR) or molecular modelisation. It has been shown that carbon dioxide acts as a complexing agent toward the amino-alcohol by setting up of a bridge with the hydroxyl and the amine protons of the solute. In that way, the resulting complex possesses lower acido-basic properties and a higher conformational rigidity, responsible for chiral discrimination.  相似文献   
53.
In order to understand the control mechanisms of a large, stable bacterial standing stock, enclosure experiments were conducted in a eutrophic lake, where both bacterial productivity and grazing pressure were very high. Total bacterial number in the different enclosures ranged from 1.2 to 2.7×107 cells mL−1 throughout the experiment. The average bacterial cell production rate estimated from a grazer eliminating experiment was 6.3×105 cells mL−1 h−1. Difference in the bacterial cell production rate between shaded and unshaded enclosures was not apparent. Bacteria showed a reduction in standing stock of only about 25–30% even after the supply of light was cut to 1%. Bacteria in the shaded enclosures then recovered their production rate in the first 12 days of perturbation. Grazing pressure in the shaded enclosures was not less than that for the control. Thus, it was considered a control mechanism of bacterial stable standing stock that the bacteria shifted their organic substrate from extracellular dissolved organic carbon freshly released from phytoplankton to that already stocked in the water column, though it is not known whether the dominant bacteria were the same.  相似文献   
54.
The products of activities of calcium and sulphate were calculated for solutions of 75 glasshouse soils. The majority of these products was found to be higher than the solubility product of gypsum, thus indicating that these soil solutions were possibly supersaturated. In another investigation, soil solutions were examined to determine whether such high activity products could be really attributed to supersaturation. By means of ultracentrifuging of solutions of glasshouse soils, it could be established that the solutions were practically free of sulphate-bearing colloidal particles. Some solutions contained calcium-bearing colloidal particles, but the quantities of calcium contained in these particles were too small to substantially influence the calcium activity. Addition of gypsum crystals to soil solutions led to crystallization of so much calcium and sulphate that the products of the activities of calcium and sulphate dropped from values that can be listed as high to values approaching the solubility product of gypsum. The results obtained demonstrate the occurrence of supersaturation of soil solutions with respect to gypsum. It is further postulated that the presence of humic substances in the soil solution is responsible for this supersaturation. The possible occurrence of supersaturation with respect to gypsum in soils other than glasshouse soils is discussed.  相似文献   
55.
Small-scale spatial heterogeneity of soil organic matter (SOM) associated with patterns of plant cover can strongly influence population and ecosystem dynamics in dry regions but is not well characterized for semiarid grasslands. We evaluated differences in plant and soil N and C between soil from under individual grass plants and from small openings in shortgrass steppe. In samples from 0 to 5 cm depth, root biomass, root N, total and mineralizable soil N, total and respirable organic C, C:N ratio, fraction of organic C respired, and ratio of respiration to N mineralization were significantly greater for soil under plants than soil from openings. These differences, which were consistent for two sites with contrasting soil textures, indicate strong differentiation of surface soil at the scale of individual plants, with relative enrichment of soil under plants in total and active SOM. Between-microsite differences were substantial relative to previously reported differences associated with landscape position and grazing intensity in shortgrass steppe. We conclude that microscale heterogeneity in shortgrass steppe deserves attention in investigation of controls on ecosystem and population processes and when sampling to estimate properties at plot or site scales.  相似文献   
56.
Abstract. Gas exchange measurements were performed to test the hypothesis that failure of stomata to open in senescing leaves of Nicotiana glauca is caused by elevated concentrations of carbon dioxide in the intercellular spaces of leaf mesophyll tissue (ci). Senescing leaves selected for experiments were completely chlorotic and lacked positive rates of photosynthesis. When stomata in detached epidermis from senescing leaves were illuminated in CO2-free air, they opened to similar apertures as those in detached epidermis from nonsenescing leaves. To compare the effects of changes in ci on stomatal responses of the two leaf types, leaf 'flags' of either nonsenescing or senescing leaves were illuminated at a photosynthetic photon flux density of 500 μmol m−2 s−1 in a gas exchange cuvette. Leaf temperatures were maintained at 23.5 ± 0.5°C, and vapour pressure differences between leaves and the air were maintained between 0.70 and 0.75kPa. Ci was adjusted by changing external concentrations of carbon dioxide in air circulating through the cuvette. Conductances and photosynthetic rates of nonsenescing leaves changed in response to changes in ci, but neither the conductances nor the photosynthetic rates of senescing leaves were affected significantly by changes in q. We conclude that guard cells of senescing leaves of Nicotiana glauca do not lose the capacity to respond to changes in carbon dioxide concentration and that increases in ci resulting from declining rates of mesophyll photosynthesis are not the sole cause of maintenance of stomatal closure during leaf senescence. The data suggest that factors external to guard cells may prevent them from responding to changes in carbon dioxide concentrations in intact senescing leaves.  相似文献   
57.
Respiration in a future, higher-CO2 world   总被引:20,自引:9,他引:11  
Abstract. Apart from its impact on global warming, the annually increasing atmospheric [CO2] is of interest to plant scientists primarily because of its direct influence on photosynthesis and photorespiration in C3 species. But in addition, 'dark' respiration, another major component of the carbon budget of higher plants, may be affected by a change in [CO2] independent of an increase in temperature. Literature pertaining to an impact of [CO2] on respiration rate is reviewed. With an increase in [CO2], respiration rate is increased in some cases, but decreased in others. The effects of [CO2] on respiration rate may be direct or indirect. Mechanisms responsible for various observations are proposed. These proposed mechanisms relate to changes in: (1) levels of nonstructural carbohydrates, (2) growth rate and structural phytomass accumulation, (3) composition of phytomass, (4) direct chemical interactions between CO2 and respiratory enzymes, (5) direct chemical interactions between CO2 and other cellular components, (6) dark CO2 fixation rate, and (7) ethylene biosynthesis rate. Because a range-of (possibly interactive) effects exist, and present knowledge is limited, the impact of future [CO2] on respiration rate cannot be predicted. Theoretical considerations and types of experiments that can lead to an increase in the understanding of this issue are outlined.  相似文献   
58.
Effects of source-sink relations on photosynthetic acclimation to elevated CO2   总被引:17,自引:11,他引:6  
Abstract. While photosynthesis of C3 plants is stimulated by an increase in the atmospheric CO2 concentration, photosynthetic capacity is often reduced after long-term exposure to elevated CO2. This reduction appears to be brought about by end product inhibition, resulting from an imbalance in the supply and demand of carbohydrates. A review of the literature revealed that the reduction of photosynthetic capacity in elevated CO2 was most pronounced when the increased supply of carbohydrates was combined with small sink size. The volume of pots in which plants were grown affected the sink size by restricting root growth. While plants grown in small pots had a reduced photosynthetic capacity, plants grown in the field showed no reduction or an increase in this capacity. Pot volume also determined the effect of elevated CO2 on the root/shoot ratio: the root/shoot ratio increased when root growth was not restricted and decreased in plants grown in small pots. The data presented in this paper suggest that plants growing in the field will maintain a high photosynthetic capacity as the atmospheric CO2 level continues to rise.  相似文献   
59.
Significant genetic variation in leaf photosynthetic rate has been reported in grain sorghum [Sorghum biocolor (L.) Moench]. The relationships between leaf photosynthetic rates and total biomass production and grain yield remain to be established and formed the purpose of this experiment. Twenty two grain sorghum parent lines were tested in the field during the 1988 growing season under well-watered and water-limited conditions. Net carbon assimilation rates were measured at mid-day during the 30 day period from panicle initiation to head exertion on upper-most fully expanded leaves using a portable photosynthesis system (LI-6200). Total biomass and grain production were determined at physiological maturity. The lines exhibited significant genetic variation in leaf photosynthetic rate, total biomass production and grain yield. Significant positive correlations existed between leaf photosynthesis and total biomass and grain production under both well-watered and water-limited conditions. The results suggest that leaf photosynthetic rate measured prior to flowering is a good indicator of productivity in grain sorghum.  相似文献   
60.
Explants excised from strawberry (Fragaria x ananassa Duch.) plantlets were cultured in vitro for 21 days on half-strength MS (Murashige & Skoog 1962) basal liquid medium with 20 g l-1 sucrose and without sugar in the vessels capped with gas permeable microporous polypropylene film. The experiments were conducted under CO2 nonenriched (350–450 mol mol-1 in the culture room) and CO2 enriched (2,000 mol mol-1 during the photoperiod in the culture room) conditions with a PPF (photosynthetic photon flux) of 200 mol m-2 s-1. The CO2 concentration in the vessels decreased to approximately 200 mol mol-1 during the photoperiod on day 21 under CO2 nonenriched conditions. The fresh and dry weight, net photosynthetic rate (NPR) per plantlet, NPR per g leaf fresh weight, NPR per g leaf dry weight, the number of unfolded leaves, and ion uptake of PO4 3-, NO3 -, Ca2+, Mg2+ and K+ on day 21 were the greatest under photoautotrophic (no sugar in the medium) and CO2 enriched conditions. The residual percent of PO4 3- was 3% on day 21 under photoautotrophic and CO2 enriched conditions.Abbreviations MS Murashige & Skoog (1962) basal medium composition - NPR net photosynthetic rate - PPF photosynthetic photon flux  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号