首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9517篇
  免费   740篇
  国内免费   420篇
  2024年   23篇
  2023年   108篇
  2022年   131篇
  2021年   203篇
  2020年   311篇
  2019年   385篇
  2018年   405篇
  2017年   289篇
  2016年   282篇
  2015年   332篇
  2014年   609篇
  2013年   968篇
  2012年   348篇
  2011年   618篇
  2010年   326篇
  2009年   468篇
  2008年   441篇
  2007年   528篇
  2006年   441篇
  2005年   442篇
  2004年   327篇
  2003年   346篇
  2002年   291篇
  2001年   199篇
  2000年   165篇
  1999年   139篇
  1998年   151篇
  1997年   140篇
  1996年   122篇
  1995年   120篇
  1994年   113篇
  1993年   128篇
  1992年   129篇
  1991年   93篇
  1990年   70篇
  1989年   79篇
  1988年   53篇
  1987年   59篇
  1986年   37篇
  1985年   51篇
  1984年   44篇
  1983年   25篇
  1982年   32篇
  1981年   24篇
  1980年   13篇
  1979年   16篇
  1978年   14篇
  1977年   12篇
  1976年   10篇
  1974年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
A method for measuring oxygen consumption in isolated perfused gills   总被引:1,自引:0,他引:1  
A method is described for measuring respiration in isolated perfused flounder gills experiencing pressures and flows similar to those seen in vivo . Mean oxygen consumption of 13 preparations bathed and perfused in identical saline was 5·00 ± 0·75 (s.e.) μ mol h−1 g wet−1, whilst that of five preparations perfused with saline but bathed in sea water (32 mg l−1) was 12·06±2·39 (s.e.) μmol h−1 g wet−1. The oxygen consumption of the seawater bathed gills was significantly higher (P<0·05) than that in saline bathed gills. These results provide direct evidence both of the high metabolic activity of the gill under normal perfusion conditions and of the increased energy expenditure of the giil in hyperosmotic, compared to isosmotic, environments.  相似文献   
102.
The dynamic pressure method (DPM) is used for measurement of k(L)a in a 1-m(3) pilot scale fermentor in coalescing (distilled water) and noncoalescing (0.3 M Na(2)SO(4) aqueous solution) batches. The method consists in recording oxygen concentration in a batch after a small pressure change (20 kPa) in the fermentor. The upward pressure change is brought about by temporary closing and subsequent throttling of outlet gas stream and the downward change by full reopening of the gas outlet. Absorption of pure oxygen yields the same k(L)a values as absorption of air. In noncoalescing batch, the downward k(L)a values are always higher than the upward values owing to spontaneous nucleation of bubbles. The experiments performed in a stirred cell confirm this behavior. Thus, only upward pressure change should be used for measurement. The correlation of k(L)a data measured in small (18-L) and large (1000-L) vessels based on power dissipated and superficial gas velocity are in a good agreement. Unlike the DPM, the classical dynamic methods yield, under the same conditions, excessively low values of k(L)a (the dynamic startup method) or fail to produce data at all (the dynamic method with interchange of air for N(2)). (c) 1994 John Wiley & Sons, Inc.  相似文献   
103.
A new method for real-time monitoring of the oxygen uptake rate (OUR) in bioreactors, based on dissolved oxygen (DO) measurement at two points, has been developed and tested extensively. The method has several distinct advantages over known techniques.It enables the continuous and undisturbed monitoring of OUR, which is conventionally impossible without gas analyzers. The technique does not require knowledge of k(L)a. It provides smooth, robust, and reliable signal. The monitoring scheme is applicable to both microbial and mammalian cell bioprocesses of laboratory or industrial scale. The method was successfully used in the cultivation of NSO-derived murine myeloma cell line producing monoclonal antibody. It was found that while the OUR increased with the cell density, the specific OUR decreased to approximately one-half at cell concentrations of 16 x 10(6) cells/mL, indicating gradual reduction of cell respiration activity. Apart from the laboratory scale cultivation, the method was applied to industrial scale perfusion culture, as well as to processes using other cell lines. (c) 1994 John Wiley & Sons, Inc.  相似文献   
104.
The application of the expanded granular sludge bed (EGSB) reactor for the anaerobic treatment of low-strength soluble wastewaters using ethanol as a model substrate was investigated in laboratory-scale reactors at 30oC. Chemical oxygen demand (COD) removal efficiency was above 80% at organic loading rates up to12 g COD/L . d with influent concentrations as low as 100 to 200 mg COD/L. These results demonstrate the suitability of the EGBS reactor for the anaerobic treatment of low-strength wastewaters. The high treatment performance can be attributed to the intense mixing regime obtained by high hydraulic and organic loads. Good mixing of the bulk liquid phase for the substrate-biomass contact and adequate expansion of the substrate-biomass contact and adequate expansion of the sludge bed for the degassing were obtained when the liquid upflow velocity (V(up)) was greater than 2.5 m/h. Under such conditions, an extremely low apparent K(s) value for acetoclastic methanogenesis of 9.8 mg COD/L was observed. The presence of dissolved oxygen in the wastewater had no detrimental effect on the treatment performance. Sludge piston flotation from pockets of biogas accumulating under the sludge bed occurred at V(up) lower than 2.5 m/h due to poor bed expansion. This problem is expected only in small diameter laboratory-scale reactors. A. more important restriction of the EGSB reactor was the sludge washout occurring at V(up) higher than 5.5 m/h and which was intensified at organic loads higher than 7 g COD/L. d due to buoyancy forces from the gas production. To achieve an equilibrium between the mixing intensity and the sludge hold-up, the operation should be limited to an organic loading rate of 7 g COD/L d. and to a liquid up-flow velocity between 2.5 and 5.5 m/h (c) 1994 John Wiley & Sons, Inc.  相似文献   
105.
The simultaneous growth and product formation in a microbial culture is an important feature of several laboratory, industrial, and environmental bioprocesses. Metabolic burden associated with product formation in these bioprocesses may lead to growth advantage of a nonproducing mutant leading to a loss of the producing population over time. A simple population dynamics model demonstrates the extreme sensitivity of population stability to the engineered productivity of a strain. Here we use flux balance analysis to estimate the effects of the metabolic burden associated with product secretion on optimal growth rates. Comparing the optimal growth rates of the producing and nonproducing strains under a given processing condition allows us to predict the population stability. In order to increase stability of an engineered strain, we determine processing conditions that simultaneously maximize the growth rate of the producing population while minimizing the growth rate of a nonproducing population. Using valine, tryptophan, and lysine production as specific examples, we demonstrate that although an appropriate choice of oxygenation may increase culture longevity more than twofold, total production as governed by economic criterion can be increased by several orders of magnitude. Choice of optimal nutrient and oxygen supply rates to enhance stability is important both for strain screening as well as for culture of engineered strains. Appropriate design of the culture environment can thus be used to enhance the productivity of bioprocesses that use engineered production strains. (c) 1994 John Wiley & Sons, Inc.  相似文献   
106.
The influence of short draft tubes covered by perforated plates on gas-liquid mass transfer was examined in external-loop airlift bioreactors. The volumetric mass transfer coefficients in a model external-loop airlift bioreactor were measured with water and non-Newtonian media. It was found that introduction of draft tubes covered with perforated plates in the riser significantly improved the mass transfer rate, particularly in higher viscous non-Newtonian fermentation media. The enhancement of mass transfer rate might be due mainly to an increase in bubble coalescence and redispersion. (c) 1994 John Wiley & Sons, Inc.  相似文献   
107.
Nostoc cordubensis Prosperi (Cyanophyta, Nostocaceae) is characterized by its mucilaginous colonies. Much of this mucilage is produced by heterocysts. By controlling growth conditions, heterocysts with and without mucilage were obtained. Mucilaginous heterocysts retained nitrogen-fixing capability at high oxygen concentrations, whereas heterocysts lacking mucilage were unable to fix nitrogen at oxygen concentrations higher than 20%. Comparison of results obtained using tetrazolium salts as indicators of highly reduced zones showed similar results.  相似文献   
108.
Exposure of isolated spinach thylakoids to high intensity illumination (photoinhibition) results in the well-characterized impairment of Photosystem II electron transport, followed by degradation of the D1 reaction centre protein. In the present study we demonstrate that this process is accompanied by singlet oxygen production. Singlet oxygen was detected by EPR spectroscopy, following the formation of stable nitroxide radicals from the trapping of singlet oxygen with a sterically hindered amine TEMP (2,2,6,6-tetramethylpiperidine). There was no detectable singlet oxygen production during anaerob photoinhibition or in the presence of sodium-azide. Comparing the kinetics of the loss of PS II function and D1 protein with that of singlet oxygen trapping suggests that singlet oxygen itself or its radical product initiates the degradation of D1.Abbreviations HEPES 4-(2-hydroxyethyl)-1-piperazine ethanesulphonle acid - PS Photosystem - TEMP 2,2,6,6-tetramethylpiperidine - TEMPO 2,2,6,6-tetramethylpiperidine-1-oxyl  相似文献   
109.
The psbO gene of cyanobacteria, green algae and higher plants encodes the precursor of the 33 kDa manganese-stabilizing protein (MSP), a water-soluble subunit of photosystem II (PSII). Using a pET-T7 cloning/expression system, we have expressed in Escherichia coli a full-length cDNA clone of psbO from Arabidopsis thaliana. Upon induction, high levels of the precursor protein accumulated in cells grown with vigorous aeration. In cells grown under weak aeration, the mature protein accumulated upon induction. In cells grown with moderate aeration, the ratio of precursor to mature MSP decreased as the optical density at induction increased. Both forms of the protein accumulated as inclusion bodies from which the mature protein could be released under mildly denaturing conditions that did not release the precursor. Renatured Arabidopsis MSP was 87% as effective as isolated spinach MSP in restoring O2 evolution activity to MSP-depleted PSII membranes from spinach; however, the heterologous protein binds to spinach PSIIs with about half the affinity of the native protein. We also report a correction to the previously published DNA sequence of Arabidopsis psbO (Ko et al., Plant Mol Biol 14 (1990) 217–227).  相似文献   
110.
Ethylene production from an embryogenic culture of Norway spruce ( Picea abies L.) was generally low. ca 2.5 nl g−1 h−1, whereas 1-aminocyclopropane-1 -carboxylic acid (ACC) concentration was high, fluctuating between 50 and 500 nmol g−1 during the 11-day incubation period. Hypoxia (2.5 and 5 kPa O2) rapidly inhibited ethylene production without subsequent accumulation of ACC. Exogenous ACC (1, 10 and 100 μ M ) did not increase ethylene production, but the highest concentrations inhibited tissue growth. Ethylene (7 μl I−1) did not inhibit growth either when supplied as ethephon in the medium or in a continuous flow system. Benzyladenine (BA) had little effect on ethylene production, although it was necessary for sustaining the ACC level. Omission of 2.4-dichloro-phenoxyacetic acid (2.4-D) from the medium caused ethylene production to increase from about 2.5 to 7 nl g−1 h−1 within the 11-day incubation period. Although 2.4-D did not specifically alter the endogenous level of ACC, the lowest ACC level, 33 nmol g−1, was observed in tissue treated with 2.4-D (22.5 μ M ) and no BA for 11 days. Data from this treatment were used to estimate the kinetic constants for ACC oxidase, the apparent Km was 50 μ M and Vmax 2.7 nl g−1 h−1. Growth of the tissue was strongly inhibited by 2.4-D in the absence of BA, but weakly in the presence of BA (4.4 μ M ). The results suggest that ethylene or ACC may be involved in the induction of embryogenic tissue and in the early stages of embryo maturation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号