首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9677篇
  免费   1018篇
  国内免费   880篇
  2024年   36篇
  2023年   150篇
  2022年   151篇
  2021年   271篇
  2020年   382篇
  2019年   387篇
  2018年   372篇
  2017年   348篇
  2016年   404篇
  2015年   434篇
  2014年   492篇
  2013年   731篇
  2012年   423篇
  2011年   427篇
  2010年   342篇
  2009年   443篇
  2008年   503篇
  2007年   460篇
  2006年   477篇
  2005年   408篇
  2004年   331篇
  2003年   391篇
  2002年   334篇
  2001年   275篇
  2000年   255篇
  1999年   221篇
  1998年   213篇
  1997年   204篇
  1996年   160篇
  1995年   159篇
  1994年   131篇
  1993年   146篇
  1992年   114篇
  1991年   104篇
  1990年   94篇
  1989年   111篇
  1988年   78篇
  1987年   73篇
  1986年   75篇
  1985年   57篇
  1984年   73篇
  1983年   47篇
  1982年   55篇
  1981年   50篇
  1980年   43篇
  1979年   42篇
  1978年   26篇
  1977年   20篇
  1976年   16篇
  1973年   10篇
排序方式: 共有10000条查询结果,搜索用时 6 毫秒
991.
Coscinodiscus radiatus Ehrenb. and Thalassiosira eccentrica (Ehrenb.) Cleve were grown in a silicate-limited chemostat at silicate concentrations below 1 μg-atoms · l?1. The resulting abnormal valves of C. radiatus lacked a thickened ring around the foramina; their pore membranes were thinner and their loculi shallower than those in normal cells. Abnormal valves of T. eccentrica had a fasciculate areolae pattern; they lacked a silica covering over the foramina and some tangential areolae walls. Neither abnormal valve could be termed a new species.  相似文献   
992.
Orangutans display remarkable developmental changes and sexual differences in facial morphology, such as the flanges or cheek-pads that develop only on the face of dominant adult males. These changes suggest that facial morphology is an important factor in visual communication. However, developmental changes in facial morphology have not been examined in detail. We studied developmental changes in the facial morphology of the Borneo orangutan (Pongo pygmaeus) by observing 79 individuals of various ages living in the Sepilok Orangutan Rehabilitation Centre (SORC) in Malaysia and in Japanese zoos. We also analyzed photographs of one captive male that were taken over a period of more than 16 years. There were clear morphological changes that occurred with growth, and we identified previously unreported sexual and developmental differences in facial morphology. Light-colored skin around the eyes and mouth is most prominent in animals younger than 3 years, and rapidly decreases in area through the age of approximately 7 years. At the same time, the scattered, erect hairs on the head (infant hair) become thick, dense hairs lying on the head (adult hair) in both sexes. The results suggest that these features are infant signals, and that adult signals may include darkened face color, adult hair, whiskers, and a beard, which begin to develop after the age of approximately 7 years in both sexes. In females, the eyelids remain white even after 10 years, and turn black at around the age of 20; in males, the eyelids turn black before the age of 10. The whiskers and beards of adults are thicker in males than in females, and are fully developed before the age of 10 in males, while they begin to develop in females only after approximately 20 years. White eyelids and undeveloped whiskers and beards may be visual signals that are indicative of young adult females. Our results also show that the facial morphology of the unflanged male is similar to that of the adult female, although it has also been pointed out that unflanged males resemble younger individuals.  相似文献   
993.
During posthatching development the fins of fishes undergo striking changes in both structure and function. In this article we examine the development of the pectoral fins from larval through adult life history stages in the zebrafish (Danio rerio), describing in detail their pectoral muscle morphology. We explore the development of muscle structure as a way to interpret the fins' role in locomotion. Genetic approaches in the zebrafish model are providing new tools for examining fin development and we take advantage of transgenic lines in which fluorescent protein is expressed in specific tissues to perform detailed three-dimensional, in vivo fin imaging. The fin musculature of larval zebrafish is organized into two thin sheets of fibers, an abductor and adductor, one on each side of an endoskeletal disk. Through the juvenile stage the number of muscle fibers increases and muscle sheets cleave into distinct muscle subdivisions as fibers orient to the developing fin skeleton. By the end of the juvenile period the pectoral girdle and fin muscles have reoriented to take on the adult organization. We find that this change in morphology is associated with a switch of fin function from activity during axial locomotion in larvae to use in swim initiation and maneuvering in adults. The examination of pectoral fins of the zebrafish highlights the yet to be explored diversity of fin structure and function in subadult developmental stages. J. Morphol. (c) 2005 Wiley-Liss, Inc.  相似文献   
994.
The cement gland (CG) is a transient mucus-secreting organ, found in most anuran embryos and early larvae and located normally on the anteroventral side of the head. Its sticky secretion allows newly hatched larvae to attach to the egg jelly or to another support and remain hidden and stationary until feeding starts. Analysis of CG morphology in 20 anuran species from six families using scanning electron microscopy revealed five distinct patterns of development, which partly related to families. The five patterns are described, as well as additional details such as CG surface ciliation and asymmetry. Three species lacked a CG. This was expected in two cases, a late-hatching phyllomedusine hylid and a direct-developing eleutherodactylid, but not in the foam-nesting Leptodactylus fuscus, which hatches at the same stage as many species that develop a CG. Lack of the CG in L. fuscus suggests that its posthatching period in the foam nest may be obligate. In both L. fuscus and the phyllomedusine hylid, there remain morphological traces of CG development.  相似文献   
995.
As a postural behavior, gliding and soaring flight in birds requires less energy than flapping flight. Slow tonic and slow twitch muscle fibers are specialized for sustained contraction with high fatigue resistance and are typically found in muscles associated with posture. Albatrosses are the elite of avian gliders; as such, we wanted to learn how their musculoskeletal system enables them to maintain spread-wing posture for prolonged gliding bouts. We used dissection and immunohistochemistry to evaluate muscle function for gliding flight in Laysan and Black-footed albatrosses. Albatrosses possess a locking mechanism at the shoulder composed of a tendinous sheet that extends from origin to insertion throughout the length of the deep layer of the pectoralis muscle. This fascial "strut" passively maintains horizontal wing orientation during gliding and soaring flight. A number of muscles, which likely facilitate gliding posture, are composed exclusively of slow fibers. These include Mm. coracobrachialis cranialis, extensor metacarpi radialis dorsalis, and deep pectoralis. In addition, a number of other muscles, including triceps scapularis, triceps humeralis, supracoracoideus, and extensor metacarpi radialis ventralis, were found to have populations of slow fibers. We believe that this extensive suite of uniformly slow muscles is associated with sustained gliding and is unique to birds that glide and soar for extended periods. These findings suggest that albatrosses utilize a combination of slow muscle fibers and a rigid limiting tendon for maintaining a prolonged, gliding posture.  相似文献   
996.
Aquatic propulsion generated by the pectoral fins occurs in many groups of perciform fishes, including numerous coral reef families. This study presents a detailed survey of pectoral fin musculoskeletal structure in fishes that use labriform propulsion as the primary mode of swimming over a wide range of speeds. Pectoral fin morphological diversity was surveyed in 12 species that are primarily pectoral swimmers, including members of all labroid families (Labridae, Scaridae, Cichlidae, Pomacentridae, and Embiotocidae) and five additional coral reef fish families. The anatomy of the pectoral fin musculature is described, including muscle origins, insertions, tendons, and muscle masses. Skeletal structures are also described, including fin shape, fin ray morphology, and the structure of the radials and pectoral girdle. Three novel muscle subdivisions, including subdivisions of the abductor superficialis, abductor profundus, and adductor medialis were discovered and are described here. Specific functional roles in fin control are proposed for each of the novel muscle subdivisions. Pectoral muscle masses show broad variation among species, particularly in the adductor profundus, abductor profundus, arrector dorsalis, and abductor superficialis. A previously undescribed system of intraradial ligaments was also discovered in all taxa studied. The morphology of these ligaments and functional ramifications of variation in this connective tissue system are described. Musculoskeletal patterns are interpreted in light of recent analyses of fin behavior and motor control during labriform swimming. Labriform propulsion has apparently evolved independently multiple times in coral reef fishes, providing an excellent system in which to study the evolution of pectoral fin propulsion.  相似文献   
997.
Between species, variation in sperm size has been related to male–female coevolution and male–male competition. In contrast, variation within species is poorly understood. A particular case of intraspecific sperm-size variation occurs in sperm-heteromorphic species, where males produce distinct sperm morphotypes, usually only one of which is fertile. This allows to investigate sperm size variation under different selection regimes. Nonfertile morphotypes, whose role is aside from fertilization, may have other functions, and this may be reflected by changes in developmental processes and a different phenotype compared to fertile sperm. We show that the intraspecific coefficient of variation in sperm length is up to four times lower for fertile than nonfertile morphotypes across 150 sperm-heteromorphic species (70 butterfly, 71 moth, 9 diopsid fly species). This is in agreement with a previous study on 11 species in the Drosophila obscura group. Significantly lower variation in fertile than nonfertile sperm morphometry may result from fertilization-related selection for optimal sperm size, novel functions of nonfertile sperm, or from tighter control of fertile sperm development. More data are needed to clarify the consequences and adaptive significance of within-morph variation, and its consistent pattern across sperm-heteromorphic insects.Co-ordinating editor: Hurst  相似文献   
998.
Hyperammonaemia has deleterious effects on the CNS in patients with liver dysfunction. Cellular mechanisms underlying the effects of hyperammonaemia are largely unknown, although astrocytes have been the main target of interest. This study investigated how treatment with NH4Cl and lactate, which increase in the brain as a consequence of hyperammonaemia, affects cells in primary rat cultures enriched in either astrocytes or microglia. Morphological changes were studied over time using light microscopy. Release of the proinflammatory cytokines tumour necrosis factor-alpha (TNF-alpha), interleukin (IL)-6 and IL-1beta was measured using ELISA. NH4Cl was found to induce vacuole formation in both culture systems. Lactate treatment altered astrocytic appearance, resulting in increased space between individual cells. Microglia adopted a round morphology with either NH4Cl or lactate treatment. Lactate, but not NH4Cl, induced release of TNF-alpha and IL-6 in both astroglial- and microglial-enriched cultures, while IL-1beta was released only in microglial cultures. Cytokine release was higher in the microglial- than in the astroglial-enriched cultures. Additionally, the astroglial-enriched cultures containing approximately 10% microglial cells released more cytokines than cultures containing about 5% microglial cells. Taken together, our data suggest that most TNF-alpha, IL-6 and IL-1beta release comes from microglia. Thus, microglia could play an important role in the pathological process of hyperammonaemia.  相似文献   
999.
We forecasted spatially structured population models with complex dynamics, focusing on the effect of dispersal and spatial scale on the predictive capability of nonlinear forecasting (NLF). Dispersal influences NLF ability by its influence on population dynamics. For simple 2-cell models, when dispersal is small, our ability to predict abundance in subpopulations decreased and then increased with increasing dispersal. Spatial heterogeneity, dispersal manner, and environmental noise did not qualitatively change this result. But results are not clear for complex spatial configurations because of complicated dispersal interactions across subpopulations. Populations undergoing periodic fluctuations could be forecasted perfectly for all deterministic cases that we studied, but less reliably when environmental noise was incorporated. More importantly, for all models that we have examined, NLF was much worse at larger spatial scales as a consequence of the asynchronous dynamics of subpopulations when the dispersal rate was below some critical value. The only difference among models was the critical value of dispersal rate, which varied with growth rate, carrying capacity, mode of dispersal, and spatial configuration. These results were robust even when environmental noise was incorporated. Intermittency, common in the dynamics of spatially structured populations, lowered the predictive capability of NLF. Forecasting population behaviour is of obvious value in resource exploitation and conservation. We suggest that forecasting at local scales holds promise, whereas forecasting abundance at regional scales may yield poor results. Improved understanding of dispersal can enhance the management and conservation of natural resources, and may help us to understand resource-exploitation strategies employed by local indigenous humans.  相似文献   
1000.
Analysis of larval Aedes aegypti midgut using scanning electron microscopy, nuclear and mitochondrial dyes, response to Bacillus thuringiensis israelensis CryIVB toxin, and electrophysiology is described. The anterior ventriculus ("stomach") region is found to have much lower mitochondrial densities than other midgut regions. The transitional region is distinguished by apical surface architecture, and by region-specific effects of CryIVB endotoxin. In this region CryIVB causes holes ranging from 1.0 to 7.0 microm in diameter (mean 3.3+/-0.53 microm, N=12), blisters 16.9+/-1.54 microm in diameter (N=10), and separation of adjacent cells. The holes are not consistent with damage due to the colloid osmotic lysis model of delta-endotoxin activity. The posterior ventriculus possesses a distinctive cellular architecture consisting of hemispherical, domed apical membranes surrounded by deep clefts. Functional and morphological heterogeneity is revealed within the posterior ventriculus, with the anterior end dominating the electrical profile of isolated, perfused preparations and showing the greatest response to serotonin. Hyperpolarization of the transepithelial potential by serotonin occurred in conjunction with a decrease in the space constant lambda, ruling out closure of ion channels as the mechanism of action of serotonin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号