首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   14篇
  国内免费   1篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2019年   6篇
  2018年   6篇
  2017年   3篇
  2016年   10篇
  2015年   4篇
  2014年   5篇
  2013年   8篇
  2012年   5篇
  2011年   1篇
  2010年   4篇
  2009年   8篇
  2008年   8篇
  2007年   4篇
  2005年   3篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1990年   2篇
  1985年   1篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
91.
92.
Variations on the string‐pull experiment have been presented to a variety of avian species. Here, we present the results of a basic vertical string‐pull task with a Harris's Hawk Parabuteo unicinctus. A 2‐year‐old subject retrieved a shielded food reward within 8 min on each of eight trials and spontaneously used solving techniques similar to corvids and parrots. Our data contribute to the small body of literature on raptor cognition by showing that it may be within the realm of at least one bird of prey species to perform the string‐pull task similarly to avian species renowned for their high cognitive abilities.  相似文献   
93.
Capsule Waders fed on the most abundant invertebrates: visual foragers preferred nektonic bugs, while tactile foragers had more diverse food preferences.  相似文献   
94.
  1. Stable isotope mixing models (SIMMs) are widely used for characterizing wild animal diets. Such models rely upon using accurate trophic discrimination factors (TDFs) to account for the digestion, incorporation, and assimilation of food. Existing methods to calculate TDFs rely on controlled feeding trials that are time-consuming, often impractical for the study taxon, and may not reflect natural variability of TDFs present in wild populations.
  2. We present TDFCAM as an alternative approach to estimating TDFs in wild populations, by using high-precision diet estimates from a secondary methodological source—in this case nest cameras—in lieu of controlled feeding trials, and provide a framework for how and when it should be applied.
  3. In this study, we evaluate the TDFCAM approach in three datasets gathered on wild raptor nestlings (gyrfalcons Falco rusticolus; peregrine falcons Falco perigrinus; common buzzards Buteo buteo) comprising contemporaneous δ13C & δ15N stable isotope data and high-quality nest camera dietary data. We formulate Bayesian SIMMs (BSIMMs) incorporating TDFs from TDFCAM and analyze their agreement with nest camera data, comparing model performance with those based on other relevant TDFs. Additionally, we perform sensitivity analyses to characterize TDFCAM variability, and identify ecological and physiological factors contributing to that variability in wild populations.
  4. Across species and tissue types, BSIMMs incorporating a TDFCAM outperformed any other TDF tested, producing reliable population-level estimates of diet composition. We demonstrate that applying this approach even with a relatively low sample size (n < 10 individuals) produced more accurate estimates of trophic discrimination than a controlled feeding study conducted on the same species. Between-individual variability in TDFCAM estimates for ∆13C & ∆15 N increased with analytical imprecision in the source dietary data (nest cameras) but was also explained by natural variables in the study population (e.g., nestling nutritional/growth status and dietary composition).
  5. TDFCAM is an effective method of estimating trophic discrimination in wild animal populations. Here, we use nest cameras as source dietary data, but this approach is applicable to any high-accuracy method of measuring diet, so long as diet can be monitored over an interval contemporaneous with a tissue's isotopic turnover rate.
  相似文献   
95.
Parasitoid-induced mortality of house fly, Musca domestica L., pupae and parasitoid progeny emergence by four species of pteromalid parasitoids, Muscidifurax raptor Girault & Sanders, M.zaraptor Kogan & Legner, Spalangia cameroni Perkins and S.endius Walker, were determined for a 24 h exposure period using parasitoid: host ratios ranging from 1:2 to 1:50. When the number of parasitoids was held constant (n = 5) and the numbers of hosts varied, and when the number of hosts was held constant (n = 100) and the number of parasitoids varied, both the number of pupae killed per parasitoid and the number of parasitoid progeny per parasitoid increased with increasing parasitoid:host ratios to reach an upper limit asymptotically. Maximum values were, respectively: M.raptor (14.7, 11.1), M.zaraptor (12.3, 9.3), S.cameroni (16.9, 5.5), S.endius (14.8, 9.7) with no consistent effects attributed to parasitoid interference. For M.raptor and S.cameroni at parasitoid:host ratios of 1:10, the pupal mortality and progeny emergence were determined for a 24 h exposure period when hosts were distributed in poultry manure at four levels of aggregation ranging from clumped to uniform. Pupal mortality was least in clumped distributions, while parasitoid progeny emergence was not significantly different.  相似文献   
96.
Parasitoid development, parasitoid-induced host mortality and parasitoid progeny emergence were determined at five constant temperatures for Muscidifurax raptor Girault and Sanders, Muscidifurax zaraptor Kogan and Legner, Spalangia cameroni Perkins and Spalangia endius Walker using pupae of the house fly, Musca domestica L., as hosts. At temperatures of 20, 25, 30 and 35 degrees C the median development times (days from oviposition to adult emergence), respectively, were M. raptor (28.4, 20.7, 14.3, 14.5), M. zaraptor (30.6, 22.8, 14.1, 14.2), S. cameroni (55.6, 35.2, 21.8, 25.0) and S. endius (52.4, 31.5, 16.3, 14.6). All species failed to emerge at 15 degrees C. Using densities of five parasitoids and 100 hosts and a 24 h exposure period, Muscidifurax species oviposited at a greater rate over a wider range of temperatures than Spalangia species. At 15, 20, 25, 30 and 35 degrees C the mean number of pupae killed per parasitoid were, respectively, M. raptor (1.4, 7.4, 10.5, 13.7, 14.1), M. zaraptor (0.0, 3.3, 8.9, 14.4, 15.0), S.cameroni (0.0, 7.8, 11.0, 11.9, 7.4), S.endius (0.6, 4.0, 7.5, 12.0, 11.7), and means of the number of parasitoid progeny per parasitoid were, respectively, M.raptor (0.2, 5.2, 7.9, 11.8, 11.6), M.zaraptor (1.3, 4.4, 8.2, 13.0, 13.7), S.cameroni (0.0, 2.4, 4.7, 5.1, 1.0), S.endius (0.0, 0.9, 3.4, 7.5, 4.9). Development and ovipositional activity in S.cameroni was strongly inhibited at 35 degrees C. The model by Sharpe & DeMichele (1977) was used to describe temperature-dependent development and the number of parasitoid progeny produced per parasitoid at temperatures of 15-30 degrees C in all species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号