首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16509篇
  免费   1595篇
  国内免费   711篇
  2024年   22篇
  2023年   298篇
  2022年   296篇
  2021年   647篇
  2020年   616篇
  2019年   590篇
  2018年   590篇
  2017年   545篇
  2016年   539篇
  2015年   686篇
  2014年   901篇
  2013年   980篇
  2012年   770篇
  2011年   655篇
  2010年   623篇
  2009年   796篇
  2008年   830篇
  2007年   838篇
  2006年   711篇
  2005年   664篇
  2004年   628篇
  2003年   620篇
  2002年   522篇
  2001年   427篇
  2000年   386篇
  1999年   353篇
  1998年   285篇
  1997年   264篇
  1996年   270篇
  1995年   232篇
  1994年   237篇
  1993年   235篇
  1992年   191篇
  1991年   172篇
  1990年   166篇
  1989年   161篇
  1988年   135篇
  1987年   122篇
  1986年   90篇
  1985年   115篇
  1984年   130篇
  1983年   73篇
  1982年   82篇
  1981年   91篇
  1980年   67篇
  1979年   49篇
  1978年   38篇
  1977年   40篇
  1976年   25篇
  1974年   7篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
11.
The origin of nervous systems is a main theme in biology and its mechanisms are largely underlied by synaptic neurotransmission. One problem to explain synapse establishment is that synaptic orthologs are present in multiple aneural organisms. We questioned how the interactions among these elements evolved and to what extent it relates to our understanding of the nervous systems complexity. We identified the human neurotransmission gene network based on genes present in GABAergic, glutamatergic, serotonergic, dopaminergic, and cholinergic systems. The network comprises 321 human genes, 83 of which act exclusively in the nervous system. We reconstructed the evolutionary scenario of synapse emergence by looking for synaptic orthologs in 476 eukaryotes. The Human–Cnidaria common ancestor displayed a massive emergence of neuroexclusive genes, mainly ionotropic receptors, which might have been crucial to the evolution of synapses. Very few synaptic genes had their origin after the Human–Cnidaria common ancestor. We also identified a higher abundance of synaptic proteins in vertebrates, which suggests an increase in the synaptic network complexity of those organisms.  相似文献   
12.
《Cell》2021,184(25):6138-6156.e28
  1. Download : Download high-res image (220KB)
  2. Download : Download full-size image
  相似文献   
13.
Combining experimental evolution with whole‐genome resequencing is a promising new strategy for investigating the dynamics of evolutionary change. Published studies that have resequenced laboratory‐selected populations of sexual organisms have typically focused on populations sampled at the end of an evolution experiment. These studies have attempted to associate particular alleles with phenotypic change and attempted to distinguish between different theoretical models of adaptation. However, neither the population used to initiate the experiment nor multiple time points sampled during the evolutionary trajectory are generally available for examination. In this issue of Molecular Ecology, Orozco‐terWengel et al. (2012) take a significant step forward by estimating genome‐wide allele frequencies at the start, 15 generations into and at the end of a 37‐generation Drosophila experimental evolution study. The authors identify regions of the genome that have responded to laboratory selection and describe the temporal dynamics of allele frequency change. They identify two common trajectories for putatively adaptive alleles: alleles either gradually increase in frequency throughout the entire 37 generations or alleles plateau at a new frequency by generation 15. The identification of complex trajectories of alleles under selection contributes to a growing body of literature suggesting that simple models of adaptation, whereby beneficial alleles arise and increase in frequency unimpeded until they become fixed, may not adequately describe short‐term response to selection.  相似文献   
14.
Published gene frequency data, checked for consistency of allele definitions across laboratories and for comparability of geographically identical samples, were pooled into a data set containing frequencies at nine loci for each of 20 populations that encompassed 10 macaque species. Genetic distances were calculated by the methods of Kidd and Cavalli-Sforza (1974). These distances were used to construct phylogenetic trees and to evaluate the relationships between divergence times and effective population sizes. Inter-and intraspecific genetic distances and the groupings defined by phenetic tree analyses support Fooden’s (1976) classification of the genus Macacainto four species groups. A paleozoogeographical model of Asia including the known times of major sea-level changes allows us to explain Macacainto four species groups. A paleozoogeographical model of Asia including the known times of major sea-level changes allows us to explain qualitatively the inferred evolutionary relationships among macaque species. Many assumptions are required in order to estimate the variables necessary in the quantitative prediction of genetic differences for a comparison between any two populations. Examination of those assumptions demonstrates the need for more accurate genetic as well as paleozoogeographic information. An erratum to this article is available at .  相似文献   
15.
Ecology and evolution

Agricultural education

Evolution and education

Education division elections

ISII in Europe

Tree project

Science teaching scholarship

Biology of terrestrial arthropods

A microscopied museum  相似文献   
16.
Characterizing the architecture of bipartite networks is increasingly used as a framework to study biotic interactions within their ecological context and to assess the extent to which evolutionary constraint shape them. Orchid mycorrhizal symbioses are particularly interesting as they are viewed as more beneficial for plants than for fungi, a situation expected to result in an asymmetry of biological constraint. This study addressed the architecture and phylogenetic constraint in these associations in tropical context. We identified a bipartite network including 73 orchid species and 95 taxonomic units of mycorrhizal fungi across the natural habitats of Reunion Island. Unlike some recent evidence for nestedness in mycorrhizal symbioses, we found a highly modular architecture that largely reflected an ecological barrier between epiphytic and terrestrial subnetworks. By testing for phylogenetic signal, the overall signal was stronger for both partners in the epiphytic subnetwork. Moreover, in the subnetwork of epiphytic angraecoid orchids, the signal in orchid phylogeny was stronger than the signal in fungal phylogeny. Epiphytic associations are therefore more conservative and may co‐evolve more than terrestrial ones. We suggest that such tighter phylogenetic specialization may have been driven by stressful life conditions in the epiphytic niches. In addition to paralleling recent insights into mycorrhizal networks, this study furthermore provides support for epiphytism as a major factor affecting ecological assemblage and evolutionary constraint in tropical mycorrhizal symbioses.  相似文献   
17.
《Cell reports》2020,30(5):1504-1514.e7
  1. Download : Download high-res image (117KB)
  2. Download : Download full-size image
  相似文献   
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号