首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2488篇
  免费   344篇
  国内免费   277篇
  3109篇
  2024年   18篇
  2023年   96篇
  2022年   50篇
  2021年   95篇
  2020年   113篇
  2019年   135篇
  2018年   117篇
  2017年   101篇
  2016年   104篇
  2015年   110篇
  2014年   117篇
  2013年   154篇
  2012年   99篇
  2011年   81篇
  2010年   79篇
  2009年   137篇
  2008年   138篇
  2007年   137篇
  2006年   149篇
  2005年   136篇
  2004年   97篇
  2003年   92篇
  2002年   78篇
  2001年   92篇
  2000年   89篇
  1999年   66篇
  1998年   61篇
  1997年   52篇
  1996年   35篇
  1995年   30篇
  1994年   37篇
  1993年   28篇
  1992年   25篇
  1991年   21篇
  1990年   19篇
  1989年   14篇
  1988年   13篇
  1987年   10篇
  1986年   11篇
  1985年   12篇
  1984年   12篇
  1983年   5篇
  1982年   13篇
  1981年   3篇
  1980年   9篇
  1979年   5篇
  1978年   2篇
  1976年   3篇
  1975年   3篇
  1974年   2篇
排序方式: 共有3109条查询结果,搜索用时 0 毫秒
101.
目的: 筛选高血压性心脏病(HHD)的影响因素,建立HHD的预测模型,为HHD的发生提供预警。方法: 选取中国重庆市某医科院校数据研究院平台2016年1月1日至2019年12月31日主要诊断为高血压性心脏病和高血压患者。通过单因素分析、多因素分析筛选HHD的影响因素,采用R语言分别构建Logistics模型、随机森林(RF)模型和极限梯度上升(XGBoost)模型。结果: 单因素分析筛选出60项差异指标,多因素分析筛选出18项差异指标(P<0.05)。Logistics模型、RF模型、XGBoost模型曲线下面积(AUC)分别为0.979、0.983和0.990。结论: 本文建立的3种HHD预测模型结果稳定,其中XGBoost模型对于HHD的发生具有良好的诊断效应。  相似文献   
102.
兴都库什喜马拉雅地区高海拔树木生长对气候变化的响应 高海拔地区快速升温可能导致树木对温度响应更为敏感,而限制高海拔地区树木生长的关键气候因子以及气候变化对树木生长产生多大程度的影响尚不清楚。本研究在兴都库什喜马拉雅地区收集了73 个样点的树轮数据,包括3个优势属的树种(Abies属、Juniperus属和Picea属),样点海拔均在3000 m以上。 将时间动态规整(dynamic time warping)的方法用于建立亚区域年表,以考虑不同站点年表之间变化的同步 性。同时,定量分析了气候因子对树木生长的贡献以及树木生长与气候因子关系的时空动态。研究结果发现,73个站点年表可以聚为3类,且与其所处的生物气候区相对应,即西喜马拉雅地区,中东喜马拉雅地区和藏东南地区。在干旱的西喜马拉雅地区,树木生长与冬、春两季的降水呈正相关关系,而在湿润的藏东南地区,树木生长与冬季温度和春季降水呈正相关关系。树木生长受最低温度的影响最大,特别是冬季温度,其重要性从西到东呈现递增趋势。滑动窗口相关分析表明,在中西喜马拉雅地区,影响树木生长的冬季温度信号在减弱,然而在藏东南地区该信号随着1980年以来的快速升温而增强。本研究结果表明,若该地区升温持续,在西喜马拉雅地区可能会因变暖引起的水分亏缺而造成森林衰退,而在藏东南地区因树木生长得益于变暖而使得森林扩张。  相似文献   
103.
Abstract

In an attempt to develop a novel biocatalyst able to efficiently catalyse the synthesis of non-natural amino acids, Escherichia coli TG1 was treated with 10 mM NaNO2 and then cultured in selective medium supplemented with 20 mM l-tert-leucine. Each culture was grown for 2 weeks and then subcultured into fresh medium with successive decreases of l-tert-leucine concentration at each transfer to a final value of 0.5 mM. The adapted cells resulting from this forced evolution procedure were able to grow in minimal medium with 0.1 mM l-tert-leucine as sole nitrogen source. Both HPLC and TLC verified progressive removal of l-tert-leucine from the medium during bacterial growth. Further studies revealed that the adapted cells metabolized l-tert-leucine by transamination, removing the amino group but leaving the carbon skeleton of the corresponding 2-oxoacid intact. Despite the mutagenesis, when the four obvious candidate amino acid aminotransferase genes were cloned and sequenced, there was no change in these structural genes. The activity of the adapted cells with l-tert-leucine is apparently attributable to the wild-type branched-chain amino acid aminotransferase (IlvAT), presumably expressed at higher levels as a result of a regulatory mutation. With the isolate I-4, the resting cells transaminate l-tert-leucine, l-norleucine, l-norvaline, γ-methyl-l-leucine and dl-homophenylalanine as effectively as does the crude extract. These evolved cells may be useful for synthesizing non-natural amino acids for the pharmaceutical industry. In addition, the adapted cells can also catalyse transamination of naturally occurring hydrophobic amino acids.  相似文献   
104.
ABSTRACT

The established practice of forest ecosystem inventory and monitoring is recognised as a main support for terrestrial natural renewable resource survey programmes. Inventory and monitoring programmes focused on an overall assessment of ecosystem attributes evolving into global environmental survey programmes have been devised, but implementation is still quite contradictory. The state-of-the-art is discussed here, with special reference to the European Union and Italy. Topical issues are reviewed, with selective concern to: remote sensing capability, probability sampling, forest type (habitat) classification and landscape ecology, sustainable management indicators. Benefits brought by information technology are highlighted. Its development and the implementation of approaches based on a sound “per habitat” landscape ecological perspective will bring unique benefits, thus leading to an effective integration among sector surveys aimed at global environmental inventory/monitoring.  相似文献   
105.
P. Giordani 《Plant biosystems》2013,147(3):628-637
Abstract

Epiphytic lichens are one of the taxonomic groups most sensitive to forest management. Nevertheless, they have not yet been exhaustively included in the assessment of Sustainable Forest Management. This work aimed at evaluating the effects of forest management on epiphytic lichens in coppiced forests, exploring the spatial patterns of diversity and the composition of communities. Moreover, the goal was to compare the performance of four potential indicators for monitoring the effects of forest management on epiphytic lichens: total lichen diversity, species associated with intensive management, species associated with aged coppiced woodlands and Indicator Species Ratio (ISR). In humid Mediterranean Liguria, 50 sampling units were chosen in Castanea sativa and deciduous Quercus spp. forests subjected to different forest management practices: intensively managed coppice and aged coppice/high forest. The effect of forest management was evident in terms of species composition, since it was possible to find significantly associated species for each of the two management types. At each sampling site, the four indicators were calculated using Indicator Value Analysis and compared through correspondence analysis. The ISR was shown to be a more effective indicator, being independent of floristic composition and the occurrence of rare species.  相似文献   
106.
Abstract

Our study had the objective to examine whether the number of forest vascular plants in a forest-poor region may be indicative of total plant species richness and of the number of threatened plant species. We also related forest plant species richness to geological and soil variables. The analysis was based on a regional flora atlas from the Weser-Elbe region in northwestern Germany including incidence data of species in a total of 1109 grid cells (each ca. 2.8 × 2.8 km2). All taxa were classified either as forest or non-forest species. Total species richness in the grid cells ranged from 65 to 597, with a mean value of 308. The number of forest species varied between 20 and 309 (mean 176). Grid cells with or without particular geological units differed in total and forest species richness, with those containing peatland and marshland being particularly species-poor. Indicator value analysis showed that both total and forest species richness in the grid cells were related to soil acidity and nitrogen in a hump-backed manner, with the highest number of species found at moderately low values for nitrogen and at intermediate values of pH. Forest species richness was highly positively correlated with the number of non-forest species and threatened non-forest species. Indicators for high species richness were primarily those species that are confined to closed semi-natural forests with a varied topography and relatively base- and nutrient-rich soils. Grid cells including historically ancient forest exhibited a higher species richness than grid cells lacking ancient forest, indicating the importance of a long habitat continuity for a high phytodiversity. The “habitat coincidence” of high species richness is best explained by similar responses of forest species and species of other habitats to the main environmental gradients. It is suggested that the regional patterns found for the Weser-Elbe region can be transferred also to other forest-poor regions in Central Europe.  相似文献   
107.
108.
Proteomics is performed in microgravity research in order to determine protein alterations occurring qualitatively and quantitatively, when single cells or whole organisms are exposed to real or simulated microgravity. To this purpose, antibody-dependent (Western blotting, flow cytometry, Luminex® technology) and antibody-independent (mass spectrometry, gene array) techniques are applied. The anticipated findings will help to understand microgravity-specific behavior, which has been observed in bacteria, as well as in plant, animal and human cells. To date, the analyses revealed that cell cultures are more sensitive to microgravity than cells embedded in organisms and that proteins changing under microgravity are highly interactive. Furthermore, one has to distinguish between primary gravity-induced and subsequent interaction-dependent changes of proteins, as well as between direct microgravity-related effects and indirect stress responses. Progress in this field will impact on tissue engineering and medicine and will uncover possibilities of counteracting alterations of protein expression at lowered gravity.  相似文献   
109.
110.

Aim

Across the tropics, large‐bodied mammal species are threatened by rapid and widespread forest habitat conversion by either commercial logging or agricultural expansion. How such species use these habitats is an important area of research for guiding their future management. The tropical forest‐dwelling sun bear, Helarctos malayanus, is the least known of the eight bear species. Consequently, the IUCN/SSC Bear Specialist Group ranks research on this species as a top priority. This study aims to investigate landscape variables that influence sun bear habitat use in forests under varying levels of degradation and protection.

Location

A 20,998 km2 Sumatra forest landscape covering Kerinci Seblat National Park (KSNP), Batang Hari Protection Forest (BHPF) and neighbouring logging and agricultural concessions.

Methods

An occupancy‐based sampling technique using detection/non‐detection data with 10 landscape covariates was applied in six study areas that operated a total of 125 camera traps. The potential differences between habitat use (ψ) of sun bears were first modelled with broad‐scale covariates of study area, land‐use types and forest type. Sun bear habitat use was then investigated with the finer‐scale landscape features associated within these areas.

Results

From 10,935 trap nights, sun bears were recorded at altitudes ranging from 365 to 1791 m. At a broad‐scale, habitat use increased with protection status, being highest in KSNP (0.688 ± 0.092, ± SE) and BHPF (0.621 ± 0.110) compared to production (0.418 ± 0.121) and convertible (0.286 ± 0.122) forests. Within these areas, sun bears showed a preference for forest that was further from public roads and villages and at a lower elevation.

Main conclusions

The habitat suitability model identified several high‐quality habitat patches outside of the priority conservation areas for immediate protection. Consequently, conservation management strategies should emphasize the importance of high conservation value forests and prohibit further conversion of threatened lowland forests.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号