首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   13篇
  国内免费   19篇
  149篇
  2024年   1篇
  2023年   3篇
  2022年   1篇
  2021年   4篇
  2020年   7篇
  2019年   14篇
  2018年   5篇
  2017年   8篇
  2016年   4篇
  2015年   5篇
  2014年   3篇
  2013年   8篇
  2012年   10篇
  2011年   7篇
  2010年   7篇
  2009年   6篇
  2008年   4篇
  2007年   7篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   4篇
  2001年   7篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1993年   2篇
  1991年   2篇
  1989年   1篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
排序方式: 共有149条查询结果,搜索用时 0 毫秒
11.
柑橘大实蝇成虫的翅载和额外负载能力   总被引:1,自引:0,他引:1  
对柑橘大实蝇Bactrocera (Tetradacus) minax (Enderlein)的有效管理受阻于对其成虫运动行为的较少的认识。通过测定其成虫翅载能力和忍受额外负载重量的能力, 从而确定其成虫所携带不同的额外负载的电子标签重量对其正常起飞的影响程度, 为制作合适的昆虫谐波雷达的电子标签提供技术参数。其雌雄成虫的翅载能力并没有随着成虫个体重量增加而降低, 也没有因为性别不同而存在差异。成虫经过正常取食和饥饿(只喂清水)变化处理, 其成虫平均净载重量约为11 mg。来自网室成虫忍受额外负载试验结果表明, 成虫额外负载7.3 mg重量或为占其自身体重大约23%重量对于其向上起飞行为有较少或没有直接的影响。结果进一步表明, 在确定昆虫谐波雷达技术跟踪其成虫携带的电子标签适合性时, 选择的电子标签的重量不能超过7.3 mg。  相似文献   
12.
Migrating birds require en route habitats to rest and refuel. Yet, habitat use has never been integrated with passage to understand the factors that determine where and when birds stopover during spring and autumn migration. Here, we introduce the stopover‐to‐passage ratio (SPR), the percentage of passage migrants that stop in an area, and use 8 years of data from 12 weather surveillance radars to estimate over 50% SPR during spring and autumn through the Gulf of Mexico and Atlantic coasts of the south‐eastern US, the most prominent corridor for North America’s migratory birds. During stopovers, birds concentrated close to the coast during spring and inland in forested landscapes during autumn, suggesting seasonal differences in habitat function and highlighting the vital role of stopover habitats in sustaining migratory communities. Beyond advancing understanding of migration ecology, SPR will facilitate conservation through identification of sites that are disproportionally selected for stopover by migrating birds.  相似文献   
13.
14.
ABSTRACT For decades, researchers have successfully used ground‐based surveys to understand localized spatial and temporal patterns in stopover habitat use by migratory birds. Recent technological advances with WSR‐88D radar now allow such investigations on much broader spatial scales. Both methods are assumed to accurately quantify patterns in migrant bird communities, yet information is lacking regarding relationships between radar estimates of migration and different ground‐based monitoring methods. From 2005 to 2007, we monitored migrant communities on or near two Department of Defense installations in the spring (Ft. Polk Military Complex, LA; U.S. Army Test and Evaluation Command, Yuma Proving Ground, AZ) and on two installations in the fall (Ft. Polk Military Complex, LA; Eglin Air Force Base, FL) using both ground‐based transect surveys and radar imagery of birds aloft. We modeled daily changes in migrant abundance and positive and negative species turnover measured on the ground as a function of radar estimates of migrant exodus and input densities. Radar data were not significant predictors of any response variable in any season either in the southeastern or southwestern United States, indicating a disparity between the results obtained using different methods. Multiple unique sources of error associated with each technique likely contributed to the conflicting outcomes, and researchers should take great care when selecting monitoring methods appropriate to address research questions, effects of management practices, or when comparing the results of migration studies using different survey techniques.  相似文献   
15.
Abstract.  1. Insect migration strategies are generally poorly understood due to the propensity for high-altitude flight of many insect species, and the technical difficulties associated with observing these movements. While some progress has been made in the study of the migration of important insect pests, the migration strategies of insect natural enemies are often unknown.
2. Suction trapping, radar monitoring, and high-altitude aerial netting were used to characterise the seasonal migrations in the U.K. of an assemblage of aphid predators: three green lacewings in the Chrysoperla carnea species complex.
3. Chrysoperla carnea sens. str . was found to be very abundant at high altitudes during their summer migration, and some individuals were capable of migrating distances of ≈ 300 km during their pre-ovipositional period. In contrast, high-altitude flights were absent in the autumn migration period, probably due to a behavioural adaptation that increases the probability that migrants will encounter their over-wintering sites. The other two species in the complex, C. lucasina and C. pallida , were much rarer, making up ≈ 3% of the total airborne populations throughout the study period.
4. The summer migration of C. carnea sens. str . was not directly temporally associated with the summer migration of its cereal aphid prey, but lagged behind by about 4 weeks. There was also no evidence of spatial association between aphid and lacewing populations.
5. The results show that to understand the population ecology of highly mobile insect species, it is necessary to characterise fully all aspects of their migration behaviour, including the role of high-altitude flights.  相似文献   
16.
A nontraditional approach to construction of metabolic charts is proposed. It is based on the discovery of symmetry in the structure of the network of metabolic reactions. So if compounds and reactions are located on the metabolic chart according to their chemical features, the chart structure will acquire a periodic pattern. The charts thus created have a natural two-dimensional coordinate system of the metabolic network. Points on the X-axis correspond to number of carbon atoms in the carbon skeleton of compounds in columns and points on the Y-axis correspond to number of -COOH groups in compounds filing in series of rows on the charts. As a result this coordinate system sections the field of the charts into rectangular blocks each of which containing compounds with the same numbers of carbon atoms and the same numbers of -COOH groups. The latter substantially improves the charts and makes them a more valid source of metabolic data possessing heuristic properties. The periodicity of the metabolic network structure enables us easily to remember information about biochemical reactions and their products. The charts can also be used as a universal key for any biological database information that is systematically connected with the metabolic information. The charts can be important for medicine and pharmacology because they can help to understand the metabolic processes involved in decomposition of a particular drug or to find the chain of reactions blocked or initiated by administering this drug into a living organism.Translated from Biokhimiya, Vol. 69, No. 12, 2004, pp. 1691–1699.Original Russian Text Copyright © 2004 by Malygin.  相似文献   
17.
ABSTRACT.   Previous studies using thermal imaging cameras (TI) have used target size as an indicator of target altitude when radar was not available, but this approach may lead to errors if birds that differ greatly in size are actually flying at the same altitude. To overcome this potential difficulty and obtain more accurate measures of the flight altitudes and numbers of individual migrants, we have developed a technique that combines a vertically pointed stationary radar beam and a vertically pointed thermal imaging camera (VERTRAD/TI). The TI provides accurate counts of the birds passing through a fixed, circular sampling area in the TI display, and the radar provides accurate data on their flight altitudes. We analyzed samples of VERTRAD/TI video data collected during nocturnal fall migration in 2000 and 2003 and during the arrival of spring trans-Gulf migration during the daytime in 2003. We used a video peak store (VPS) to make time exposures of target tracks in the video record of the TI and developed criteria to distinguish birds, foraging bats, and insects based on characteristics of the tracks in the VPS images and the altitude of the targets. The TI worked equally well during daytime and nighttime observations and best when skies were clear, because thermal radiance from cloud heat often obscured targets. The VERTRAD/TI system, though costly, is a valuable tool for measuring accurate bird migration traffic rates (the number of birds crossing 1609.34 m [1 statute mile] of front per hour) for different altitudinal strata above 25 m. The technique can be used to estimate the potential risk of migrating birds colliding with man-made obstacles of various heights (e.g., communication and broadcast towers and wind turbines)—a subject of increasing importance to conservation biologists.  相似文献   
18.
An international and interdisciplinary Radar Aeroecology Workshop was held at the National Weather Center on 5-6 March 2012 on the University of Oklahoma campus in Norman, OK, USA. The workshop brought together biologists, meteorologists, radar engineers and computer scientists from 22 institutions and four countries. A central motivation behind the Radar Aeroecology Workshop was to foster better communication and cross-disciplinary collaboration among a diverse spectrum of researchers, and promote a better understanding of the ecology of animals that move within and use the Earth's lower atmosphere (aerosphere).  相似文献   
19.
1 A network of light‐traps, an aerial net carried by kytoon (balloon) and two entomological radars were used to investigate whether ground beetles migrate nocturnally through China. The network‐wide, simultaneous sudden increase in light trap catches, and after subsequent decrease, indicated a seasonal long‐distance night migration of ground beetles, with Pseudoophonus griseus (Panzer) predominant, in August. 2 Aerial net trapping indicated that carabids were able to ascend to altitudes of at least 200 m and become windborne. Radar observations indicated that the migratory beetles formed high‐density layer concentrations at approximately 200–300 m. 3 These concentrations were coincident with the top of the temperature inversion and a wind speed maximum, which suggested that the carabids tended to select warm, fast moving air for their long‐distance migration. 4 The ground beetles orientated and displaced towards the downwind direction in southerly winds. Their air speed decreased as the tailwind increased and, thus, migrating beetles appeared to be conserving energy. 5 The mean ± SD displacement speed (ground speed) and air speed were 6.85 ± 1.73 m/s (n= 172) and 4.45 ± 1.54 m/s (n= 172), respectively. The duration of flight, estimated from the variation in area density derived from radar data, was approximately 9–10 h, indicating that the beetles might migrate hundreds of kilometres in a single flight.  相似文献   
20.
Besides the scientific interest in the quantification of bird migration, there is an increasing need to quantify bird movements for the assessment of bird collision risk with artificial structures. In many environmental impact studies, the radar method is used in an inappropriate manner. The processing of echoes consists often of counting blips within defined screen fields, and the surveyed volume is estimated without reference to the detection probabilities of different 'target sizes' (radar cross-sections). The aim of this paper is to present a procedure to quantify bird migration reliably using radar by stating the theoretical requirements of every single step of this procedure and presenting methodological solutions using our own radar data from extensive field studies. Our methodological solutions can be applied to various radar systems, including widely used ship radar. The procedure presented involves discriminating the echoes of birds and insects and estimating the different detection probabilities of differently 'sized' birds (radar cross-sections). By ignoring the different detection probabilities, density estimations may be wrong by as much as 400%. We fear that quantification of bird migration and predicted bird numbers affected by collisions with artificial structures are in many cases based on unreliable estimates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号