首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7644篇
  免费   541篇
  国内免费   321篇
  2023年   116篇
  2022年   185篇
  2021年   265篇
  2020年   281篇
  2019年   392篇
  2018年   354篇
  2017年   206篇
  2016年   198篇
  2015年   214篇
  2014年   519篇
  2013年   545篇
  2012年   356篇
  2011年   439篇
  2010年   312篇
  2009年   359篇
  2008年   364篇
  2007年   377篇
  2006年   309篇
  2005年   285篇
  2004年   232篇
  2003年   211篇
  2002年   186篇
  2001年   116篇
  2000年   110篇
  1999年   101篇
  1998年   119篇
  1997年   105篇
  1996年   56篇
  1995年   67篇
  1994年   56篇
  1993年   51篇
  1992年   59篇
  1991年   57篇
  1990年   35篇
  1989年   45篇
  1988年   36篇
  1987年   34篇
  1986年   29篇
  1985年   47篇
  1984年   91篇
  1983年   68篇
  1982年   81篇
  1981年   70篇
  1980年   57篇
  1979年   61篇
  1978年   43篇
  1977年   54篇
  1976年   34篇
  1975年   29篇
  1974年   34篇
排序方式: 共有8506条查询结果,搜索用时 15 毫秒
991.
An α-glucosidase was purified from sweet corn seeds by fractionation with ammonium sulfate, chromatographies on CM-Sepharose and Sepharose 4B, and gel filtrations on Sephadex G-100. The enzyme was homogeneous in disc electrophoretic analysis. The molecular weight was estimated to be about 9.6 × 104 by SDS-disc electrophoresis.

The enzyme showed high activities toward maltose, nigerose, phenyl-α-maltoside, and maltooligosaccharides. The ratios of maximum velocity for maltose, nigerose, kojibiose, isomaltose, phenyl-α-glucoside, phenyl-α-maltoside, panose, turanose, and soluble starch were estimated to be 100 : 78 : 17 : 11 : 28 : 100 : 31 : 3.4 : 126, and the Km values for these substrates, 1.5 mM, 1.4 mM, 0.48 mM, 14 mM, 4.2 mM, 1.1 mM, 5.0 mM, 0.28 mM and 52mg/ml, respectively. The maximum velocity for soluble starch was high, but this α-glucan was not a favorable substrate because the Km value was also very high. The Vmax for maltooligosaccharides were somewhat dependent on the degree of polymerization (n). The Km values for substrates having four or more glucose units increased with the increase in n.  相似文献   
992.
Abnormal hyperplasia of fibroblast‐like synoviocytes (FLS) leads to the progression of rheumatoid arthritis (RA). This study aimed to investigate the role of miR‐124a in the pathogenesis of RA. The viability and cell cycle of FLS in rheumatoid arthritis (RAFLS) were evaluated by Cell Counting Kit 8 and flow cytometry assay. The expression of PIK3CA, Akt, and NF‐κB in RAFLS was examined by real‐time PCR and Western blot analysis. The production of tumour necrosis factor (TNF)‐α and interleukin (IL)‐6 was detected by ELISA. The joint swelling and inflammation in collagen‐induced arthritis (CIA) mice were examined by histological and immunohistochemical analysis. We found that miR‐124a suppressed the viability and proliferation of RAFLS and increased the percentage of cells in the G1 phase. miR‐124a suppressed PIK3CA 3'UTR luciferase reporter activity and decreased the expression of PIK3CA at mRNA and protein levels. Furthermore, miR‐124a inhibited the expression of the key components of the PIK3/Akt/NF‐κB signal pathway and inhibited the expression of pro‐inflammatory factors TNF‐α and IL‐6. Local overexpression of miR‐124a in the joints of CIA mice inhibited inflammation and promoted apoptosis in FLS by decreasing PIK3CA expression. In conclusion, miR‐124a inhibits the proliferation and inflammation in RAFLS via targeting PIK3/NF‐κB pathway. miR‐124a is a promising therapeutic target for RA.  相似文献   
993.
994.
Sepsis in human beings is a major problem involving many individuals and with a high death rate. Except for a single drug (recombinant activated protein C) that has been approved for treatment of septic patients, supportive measures represent the main clinical approach. There are many models of experimental sepsis, mostly in rodents. A commonly used model is cecal ligation and puncture (CLP). In this model, robust activation of complement occurs together with up-regulation of C5a receptors (C5aR, C5L2) in a variety of different organs (lungs, kidneys, liver, heart). In septic human beings there is abundant evidence for complement activation. Interception of C5a or its receptors in the CLP model greatly improves survival in septic rodents. There is compelling evidence that CLP causes an intense pro-inflammatory state and that C5a interaction with its receptors can be linked to apoptosis of the lymphoid system and cells of the adrenal medulla, loss of innate immune functions of blood neutrophils, consumptive coagulopathy and cardiac dysfunction. These findings may have implications for therapeutic interventions in human beings with sepsis.  相似文献   
995.
Separase cleaves cohesin to allow chromosome segregation. Separase also regulates cortical granule exocytosis and vesicle trafficking during cytokinesis, both of which involve RAB-11. We investigated whether separase regulates exocytosis through a proteolytic or non-proteolytic mechanism. In C. elegans, protease-dead separase (SEP-1PD::GFP) is dominant negative. Consistent with its role in cohesin cleavage, SEP-1PD::GFP causes chromosome segregation defects. As expected, partial depletion of cohesin rescues this defect, confirming that SEP-1PD::GFP acts through a substrate trapping mechanism. SEP-1PD::GFP causes cytokinetic defects that are synergistically exacerbated by depletion of the t-SNARE SYX-4. Furthermore, SEP-1PD::GFP delays furrow ingression, causes an accumulation of RAB-11 vesicles at the cleavage furrow site and delays the exocytosis of cortical granules during anaphase I. Depletion of syx-4 further enhanced RAB-11::mCherry and SEP-1PD::GFP plasma membrane accumulation during cytokinesis, while depletion of cohesin had no effect. In contrast, centriole disengagement appears normal in SEP-1PD::GFP embryos, indicating that chromosome segregation and vesicle trafficking are more sensitive to inhibition by the inactive protease. These findings suggest that separase cleaves an unknown substrate to promote the exocytosis of RAB-11 vesicles and paves the way for biochemical identification of substrates.  相似文献   
996.
Two new C11-terpenes with an octahydrobenzofuran skeleton, designated ficusnotadiol (1) and ficusnotanone (2), have been isolated from the plant Ficus nota. Their structures were elucidated on the basis of spectroscopic data. The absolute structure of 1 was determined by X-ray crystallographic analysis. The isolated compounds were evaluated for their antibacterial activity against Bacillus subtilis.  相似文献   
997.
Drosophila has illuminated our understanding of the genetic basis of normal development and disease for the past several decades and today it continues to contribute immensely to our understanding of complex diseases 1-7. Progression of tumors from a benign to a metastatic state is a complex event 8 and has been modeled in Drosophila to help us better understand the genetic basis of this disease 9. Here I present a simple protocol to genetically induce, observe and then analyze the progression of tumors in Drosophila larvae. The tumor induction technique is based on the MARCM system 10 and exploits the cooperation between an activated oncogene, RasV12 and loss of cell polarity genes (scribbled, discs large and lethal giant larvae) to generate invasive tumors 9. I demonstrate how these tumors can be visualized in the intact larvae and then how these can be dissected out for further analysis. The simplified protocol presented here should make it possible for this technique to be utilized by investigators interested in understanding the role of a gene in tumor invasion.  相似文献   
998.
999.
1000.
Breast cancer is the second leading cause of cancer death in women. Despite improvement in treatment over the past few decades, there is an urgent need for development of targeted therapies. miR-155 (microRNA-155) is frequently up-regulated in breast cancer. In this study, we demonstrate the critical role of miR-155 in regulation of cell survival and chemosensitivity through down-regulation of FOXO3a in breast cancer. Ectopic expression of miR-155 induces cell survival and chemoresistance to multiple agents, whereas knockdown of miR-155 renders cells to apoptosis and enhances chemosensitivity. Further, we identified FOXO3a as a direct target of miR-155. Sustained overexpression of miR-155 resulted in repression of FOXO3a protein without changing mRNA levels, and knockdown of miR-155 increases FOXO3a. Introduction of FOXO3a cDNA lacking the 3′-untranslated region abrogates miR-155-induced cell survival and chemoresistance. Finally, inverse correlation between miR-155 and FOXO3a levels were observed in a panel of breast cancer cell lines and tumors. In conclusion, our study reveals a molecular link between miR-155 and FOXO3a and presents evidence that miR-155 is a critical therapeutic target in breast cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号