首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6649篇
  免费   304篇
  国内免费   288篇
  2024年   8篇
  2023年   73篇
  2022年   143篇
  2021年   159篇
  2020年   222篇
  2019年   314篇
  2018年   318篇
  2017年   207篇
  2016年   208篇
  2015年   170篇
  2014年   425篇
  2013年   672篇
  2012年   197篇
  2011年   408篇
  2010年   226篇
  2009年   284篇
  2008年   291篇
  2007年   318篇
  2006年   261篇
  2005年   275篇
  2004年   245篇
  2003年   216篇
  2002年   184篇
  2001年   110篇
  2000年   85篇
  1999年   90篇
  1998年   83篇
  1997年   103篇
  1996年   109篇
  1995年   81篇
  1994年   62篇
  1993年   70篇
  1992年   62篇
  1991年   52篇
  1990年   29篇
  1989年   42篇
  1988年   25篇
  1987年   34篇
  1986年   29篇
  1985年   31篇
  1984年   70篇
  1983年   41篇
  1982年   51篇
  1981年   31篇
  1980年   31篇
  1979年   31篇
  1978年   11篇
  1977年   17篇
  1976年   12篇
  1974年   14篇
排序方式: 共有7241条查询结果,搜索用时 109 毫秒
971.
Three series of novel urushiol derivatives were designed by introducing a hydroxamic acid moiety into the tail of an alkyl side chain and substituents with differing electronic properties or steric bulk onto the benzene ring and alkyl side chain. The compounds’ binding affinity toward HDAC8 was screened by Glide docking. The highest-scoring compounds were processed further with molecular docking, MD simulations, and binding free energy studies to analyze the binding modes and mechanisms. Ten compounds had Glide scores of ?8.2 to ?10.2, which revealed that introducing hydroxy, carbonyl, amino, or methyl ether groups into the alkyl side chain or addition of –F, –Cl, sulfonamide, benzamido, amino, or hydroxy substituents on the benzene ring could significantly increase binding affinity. Molecular docking studies revealed that zinc ion coordination, hydrogen bonding, and hydrophobic interactions contributed to the high calculated binding affinities of these compounds toward HDAC8. MD simulations and binding free energy studies showed that all complexes possessed good stability, as characterized by low RMSDs, low RMSFs of residues, moderate hydrogen bonding and zinc ion coordination and low values of binding free energies. Hie147, Tyr121, Phe175, Hip110, Phe119, Tyr273, Lys21, Gly118, Gln230, Leu122, Gly269, and Gly107 contributed favorably to the binding; and Van der Waals and electrostatic interactions provided major contributions to the stability of these complexes. These results show the potential of urushiol derivatives as HDAC8 binding lead compounds, which have great therapeutic potential in the treatment of various malignancies, neurological disorders, and human parasitic diseases.  相似文献   
972.
The eIF2α kinase activity of the heme-regulated inhibitor (HRI) is regulated by heme which makes it a unique member of the family of eIF2α kinases. Since heme concentrations create an equilibrium for the kinase to be active/inactive, it becomes important to study the heme binding effects upon the kinase and understanding its mechanism of functionality. In the present study, we report the thermostability achieved by the catalytic kinase domain of HRI (HRI.CKD) upon ligand (heme) binding. Our CD data demonstrates that the HRI.CKD retains its secondary structure at higher temperatures when it is in ligand bound state. HRI.CKD when incubated with hemin loses its monomeric state and attains a higher order oligomeric form resulting in its stability. The HRI.CKD fails to refold into its native conformation upon mutation of H377A/H381A, thereby confirming the necessity of these His residues for correct folding, stability, and activity of the kinase. Though our in silico study demonstrated these His being the ligand binding sites in the kinase insert region, the spectra-based study did not show significant difference in heme affinity for the wild type and His mutant HRI.CKD.  相似文献   
973.
Antibodies recognize protein targets with great affinity and specificity. However, posttranslational modifications and the presence of intrinsic disulfide‐bonds pose difficulties for their industrial use. The immunoglobulin fold is one of the most ubiquitous folds in nature and it is found in many proteins besides antibodies. An example of a protein family with an immunoglobulin‐like fold is the Cysteine Protease Inhibitors (ICP) family I42 of the MEROPs database for protease and protease inhibitors. Members of this protein family are thermostable and do not present internal disulfide bonds. Crystal structures of several ICPs indicate that they resemble the Ig‐like domain of the human T cell co‐receptor CD8α As ICPs present 2 flexible recognition loops that vary accordingly to their targeted protease, we hypothesize that members of this protein family would be ideal to design peptide aptamers that mimic protein‐protein interactions. Herein, we use an ICP variant from Entamoeba histolytica (EhICP1) to mimic the interaction between p53 and MDM2. We found that a 13 amino‐acid peptide derived from p53 can be introduced in 2 variable loops (DE, FG) but not the third (BC). Chimeric EhICP1‐p53 form a stable complex with MDM2 at a micromolar range. Crystal structure of the EhICP1‐p53(FG)‐loop variant in complex with MDM2 reveals a swapping subdomain between 2 chimeric molecules, however, the p53 peptide interacts with MDM2 as in previous crystal structures. The structural details of the EhICP1‐p53(FG) interaction with MDM2 resemble the interaction between an antibody and MDM2.  相似文献   
974.
975.
To clarify the anaerobic microbial interactions in the process of carbon mineralization in marine eutrophic environments, the microbial sulfate reduction and methane production rates were examined in coastal marine sediments of Ise Bay, Japan, in autumn 1990. Sulfate reduction rates (51–210 nmol ml−1 day−1 at 24°C) were much higher than the methane production ones (<1.78 nmol ml−1 day−1) in the surface sediments (top 2 cm) at the six stations surveyed (water depth: 10.7–23.3 m). Substrates for sulfate-reducing bacteria (SRB) were estimated after the addition of a specific inhibitor for SRB (20 mmol l−1 molybdate) into the sediment slurry, from the substrate accumulation rates. In the presence of the inhibitor, sulfate reduction was completely stopped and volatile fatty acids (mainly acetate) were accumulated, although hydrogen was not. Methane production occurred markedly accompanied by consumption of the accumulated acetate from the third day after the addition of molybdate. The maximum rate of methane production was 1.2–1.9 μmol ml−1 day−1, which was similar to those in highly polluted freshwater sediments such as the Tama River, Tokyo, Japan. These results show that acetate is a common major substrate for sulfate reduction and methane production, and SRB competitively inhibit potential acetoclastic methanogenesis in coastal sediments. Methanogens may potentially inhabit the sediments at low levels of population density and activity.  相似文献   
976.
By means of a Sephadex G-50 column and anionic exchange HPLC a cerebral cortex soluble fraction (II-E) which highly inhibits neuronal Na+-K+-ATPase activity has been previously obtained. Herein, II-E properties are compared with those of the cardenolide ouabain, the selective and specific Na+, K+-ATPase inhibitor. It was observed that alkali treatment destroyed II-E but not ouabain inhibitory activity. II-E presented a maximal absorbance at 265 nm both at pH 7 and pH 2 which diminished at pH 10. Ouabain showed a maximum at 220 nm which was not altered by alkalinization. II-E was not retained in a C-18 column, indicating its hydrophilic nature, whereas ouabain presented a 26-min retention time in reverse phase HPLC. Therefore, it is concluded that the inhibitory factor present in II-E is structurally different to ouabain.  相似文献   
977.
978.
Ozone effects on plant water relations have been reported to be similar to those of water-deficit. The objective was to identify ozone-inducible (OI) clones from Atriplex canescens (saltbush) and determine if they were also responsive to water-deficit as well as SO2. cDNA clones derived from four different polyA RNAs which accumulate in 8-month-old shrub leaves exposed to ozone (0.2 μl I−1, 6 h day−1, 7 days) were isolated by differential screening, analyzed by northern blots, sequenced, and gene product homologies with other plant genes were determined. Clone OI12A-3 has homology with wound-inducible proteinase inhibitors, whereas clone OI8–3 protein is homologous to thiol proteases. Clones OI2–2 and OI14–3 putatively code for glycine-rich proteins with repeated motifs (Gly-Gly-Gly-Tyr-Gly-His)n and putative cell-wall-targeting signal peptides. Clone OI2–2 and particularly clone OI14–3 were also induced by both SO2 and water-deficit. These data indicate that woody plant genes associated with cell wall protein production and whose expression is induced by several stress factors may be responding to common oxidative stress pathways.  相似文献   
979.
Cultivated varieties of the common bean (Phaseolus vulgaris L.) contain an α-amylase inhibitor (αAI-1) that inhibits porcine pancreatic α-amylase (PPA; EC 3.2.1.1) and the amylases of certain seed weevils, but not that of the Mexican bean weevil, Zabrotes subfasciatus. A variant of αAI-1, called αAI-2, is found in certain arcelin-containing wild accessions of the common bean. The variant αAI-2 inhibits Z. subfasciatus α-amylase (ZSA), but not PPA. We purified αAI-2 and studied its interaction with ZSA. The formation of the αAI-2-ZSA complex is time-dependent and occurs maximally at pH 5.0 or below. When a previously isolated cDNA assumed to encode αAI-2 was expressed in transgenic tobacco seeds, the seeds contained inhibitory activity toward ZSA but not toward PPA, confirming that the cDNA encodes αAI-2. The inhibitors αAI-1 and αAI-2 share 78% sequence identity at the amino acid level and they differ in an important region that is part of the site where the enzyme binds the inhibitor. The swap of a tripeptide in this region was not sufficient to change the specificity of the two inhibitors towards their respective enzymes. The three-dimensional structure of the αAI-1/PPA complex has just been solved and we recently obtained the derived amino acid sequence of ZSA. This additional information allows us to discuss the results described here in the framework of the amino acid residues of both proteins involved in the formation of the enzyme-inhibitor complex and to pinpoint the amino acids responsible for the specificity of the interaction. Received: 14 April 1997 / Accepted: 10 May 1997  相似文献   
980.
Phase-contrast and fluorescence microscopic observation showed that DNA added in the cell-culture medium for fibroblasts localized just on the surface of fibroblasts. The DNA bound to fibroblasts was found to be eluted by treating with collagenase. The suppression for the proliferation of fibroblasts by external DNA was confirmed with microscopic observation for the cells cultured in the presence and absence of DNA. Proliferation of the cells decreased from 412 to 155% by the addition of DNA. These results indicate that DNA has an affinity for collagen, the most major extracellular-matrix produced by fibroblasts, and suppresses the growth of fibroblasts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号