首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1382篇
  免费   150篇
  国内免费   108篇
  2024年   8篇
  2023年   36篇
  2022年   38篇
  2021年   37篇
  2020年   52篇
  2019年   56篇
  2018年   66篇
  2017年   61篇
  2016年   69篇
  2015年   48篇
  2014年   73篇
  2013年   119篇
  2012年   41篇
  2011年   82篇
  2010年   49篇
  2009年   83篇
  2008年   97篇
  2007年   85篇
  2006年   70篇
  2005年   47篇
  2004年   48篇
  2003年   26篇
  2002年   37篇
  2001年   21篇
  2000年   23篇
  1999年   27篇
  1998年   18篇
  1997年   22篇
  1996年   21篇
  1995年   13篇
  1994年   20篇
  1993年   18篇
  1992年   15篇
  1991年   9篇
  1990年   11篇
  1989年   11篇
  1988年   8篇
  1987年   8篇
  1986年   5篇
  1985年   4篇
  1984年   16篇
  1983年   13篇
  1982年   9篇
  1981年   6篇
  1980年   6篇
  1979年   7篇
  1978年   1篇
排序方式: 共有1640条查询结果,搜索用时 218 毫秒
91.
In this study we show that the diadinoxanthin cycle in the diatom Phaeodactylum tricornutum is stimulated by mild UV-B radiation. High steady state concentrations of diatoxanthin established during a period of strong actinic illumination with white light (300 mol photons m-2 s-1 PAR) are further increased if weak UV-B (3 mol photons m-2 s-1) is additionally applied. Short term increases in the diatoxanthin concentration caused by UV-B strongly correlate with a stoichiometric decrease in diadinoxanthin. The UV-B dependent increase in diatoxanthin is correlated with a concommitant enhancement of non-photochemical quenching of chlorophyll fluorescence and a decrease in the quantum efficiency of oxygen evolution. This indicates that UV-B induced diatoxanthin functions in thermal energy dissipation. Possible scenarios for a stimulation of the diadinoxanthin cycle by UV-B are discussed.  相似文献   
92.
Steady-state quenching and time-resolved fluorescence measurements of L-tryptophan binding to the tryptophan-free mutant W19/99F of the tryptophan repressor of Escherichia coli have been used to observe the coreperessor microenvirnment changes upon ligand binding. Using iodide and acrylamide as quenchers, we have resolved the emission spectra of the corepressor into two components. The bluer component of L-tryptophan buried in the holorepressor exhibits a maximum of the fluorescence emission at 336 nm and can be characterized by a Stern–Volmer quenching constant equal to about 2.0–2.3 M–1. The second, redder component is exposed to the solvent and possesses the fluorescence emission and Stern–Volmer quenching constant characteristic of L-tryptophan in the solvent. When the Trp holorepressor is bound to the DNA operator, further alterations in the corepressor fluorescence are observed. Acrylamide quenching experiments indicate that the Stern–Volmer quenching constant of the buried component of the corepressor decreases drastically to a value of 0.56 M–1. The fluorescence lifetimes of L-tryptophan in a complex with Trp repressor decrease substantially upon binding to DNA, which indicates a dynamic mechanism of the quenching process.  相似文献   
93.
Lazár  D.  Pospíšil  P.  Nauš  J. 《Photosynthetica》1999,37(2):255-265
Chlorophyll a fluorescence induction measured by a fluorometer with a high temperature stressed plant material shows a new K step which is a clear peak due to fast fluorescence rise and subsequent decrease of fluorescence intensity. We focused on an explanation of the decrease of fluorescence after the K step using artificial electron acceptors and donors to photosystem 2 (PS2). Addition of the artificial electron acceptors or donors suppressed the decrease of fluorescence after the K step. We suggest that the decrease mainly reflects (by more than 81 %) an energy loss process in the reaction centre of PS2 which is most probably a nonradiative charge recombination between P680+ (oxidised primary electron donor in PS2) and a negative charge stored on either Pheo or QA (reduced primary electron acceptor of PS2 and reduced primary quinone electron acceptor of PS2, respectively). We suggest that the energy loss process is only possible when the inhibition of both the donor and the acceptor sides of PS2 occurs. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
94.
He  J.  Lee  S.K. 《Photosynthetica》2004,42(3):457-463
Photosynthetic utilization of radiant energy was studied by chlorophyll (Chl) fluorescence and maximum photosynthetic O2 evolution (P max) in temperate lettuce (Lactuca sativa L.) grown under natural tropical fluctuating ambient temperatures but with their roots exposed to two different root-zone temperatures (RZTs): a constant 20 °C-RZT (RZT20) and a fluctuating ambient RZT (RZTa) from 23 to 40 °C. On a sunny day, irrespective of RZT, F/Fm [ratio of the variable to maximal fluorescence under irradiation (the maximal photosystem 2 quantum yield with actinic light)] decreased and non-photochemical quenching (NPQ) increased parallel to the increase of photosynthetic photon flux density (PPFD). However, RZTa plants showed lower F/Fm and higher NPQ than RZT20 plants. The electron transport rate (ETR) was much higher in RZT20 plants than in RZTa plants especially during moderately sunny days. There were no significant diurnal changes in P max although these values of RZT20 plants were much higher than those of RZTa plants. On cloudy days, no significant diurnal changes in F/Fm and NPQ occurred, but F/Fm was higher and NPQ was lower in RZT20 plants than in RZTa plants. Diurnal changes in ETR were also observed in all plants while P max values throughout the whole cloudy days in both RZT20 and RZTa plants were constant. Again, RZT20 plants had much higher values of P max than RZTa plants. During RZT transfer period, all Chl fluorescence parameters measured at midday fluctuated with PPFD. Impact of RZT on these parameters was observed 2–3 d after RZT transfer. ETR and P max measured with saturating PPFD in the laboratory did not vary with the fluctuating PPFD in the greenhouse but the effects of RZT on these two parameters were observed 3–4 d after RZT transfer. Thus RZT affects photosynthetic utilization of photon energy in temperate lettuce grown under natural tropical condition.  相似文献   
95.
Jiang  C.-D.  Gao  H.-Y.  Zou  Q.  Jiang  G.-M. 《Photosynthetica》2004,42(3):409-415
Chlorophyll fluorescence kinetics was used to investigate the effect of 1,4-dithiothreitol (DTT) on the distribution of excitation energy between photosystem 1 (PS1) and photosystem 2 (PS2) in soybean leaves under high irradiance (HI). The maximum PS2 quantum yield (Fv/Fm) was hardly affected by the presence of DTT, however, photon-saturated photosynthesis was depressed distinctly. Photochemical efficiency of open PS2 reaction centres during irradiation (Fv/Fm) was enhanced by about 30–40 % by DTT treatment, whereas photochemical quenching (qP) was depressed by about 40 % under HI. DTT treatment caused a 30 % decrease in allocation of excitation energy to PS1 under HI and a 20 % increase to PS2. An obvious shift in the balance of excitation energy distribution between photosystems was observed in DTT-treated leaves. Though high excitation pressure (1 - qP) resulted from DTT treatment, non-photochemical quenching (qN) was lower. DTT completely inhibited the formation of zeaxanthin and also distinctly depressed the state transition (qT). The shift in the balance of excitation distribution between the two photosystems induced by DTT was mainly due to the enhancement of excitation energy capture by PS2 antenna and the inhibition of state transition. It might be the shift in the balance between the two photosystems that mainly induced the depression of photosynthesis. Thus, to keep high utilization efficiency of absorbed photon energy, it is necessary to maintain the balance of excitation distribution between PS2 and PS1.  相似文献   
96.
Genistein is an isoflavone and phytoestrogen that is a potent inhibitor of cell proliferation and angiogenesis. This study was designed to investigate the binding of genistein to human serum albumin (HSA) under physiological conditions with drug concentrations in the range of 6.7 × 10−6 to 2.0 × 10−5 mol L−1 and HSA concentration at 1.5 × 10−6 mol L−1. Fluorescence quenching methods in combination with Fourier transform infrared (FT-IR) spectroscopy and circular dichroism (CD) spectroscopy was used to determine the binding mode, the binding constant and the protein structure changes in the presence of genistein in aqueous solution. Changes in the CD spectra and FT-IR spectra were observed upon ligand binding, and the degree of tryptophan fluorescence quenching change did significantly in the complexes. These data have proved the change in protein secondary structure accompanying ligand binding. The change in tryptophan fluorescence intensity was used to determine the binding constants. The thermodynamic parameters, the enthalpy change (ΔH) and the entropy change (ΔS) were calculated to be −22.24 kJ mol−1and 19.60 J mol−1 K−1 according to the van’t Hoff equation, which indicated that hydrophobic and electrostatic interactions play the main role in the binding of genistein to HSA.  相似文献   
97.
When the absorption of light energy exceeds the capacity for its utilization in photosynthesis, regulation of light harvesting is critical in order for photosynthetic organisms to minimize photo-oxidative damage. Thermal dissipation of excess absorbed light energy, measured as non-photochemical quenching (NPQ) of chlorophyll fluorescence, is induced rapidly in response to excess light conditions, and it is known that xanthophylls such as zeaxanthin and lutein, the transthylakoid pH gradient, and the PsbS protein are involved in this mechanism. Although mutants affecting NPQ and the biosynthesis of zeaxanthin and lutein were originally isolated and characterized at the physiological level in the unicellular green alga Chlamydomonas reinhardtii, the molecular basis of several of these mutants, such as npq1 and lor1, has not been determined previously. The recent sequencing of the C. reinhardtii nuclear genome has facilitated the search for C. reinhardtii homologs of plant genes involved in xanthophyll biosynthesis and regulation of light harvesting. Here we report the identification of C. reinhardtii genes encoding PsbS and lycopene ɛ-cyclase, and we show that the lor1 mutation, which affects lutein synthesis, is located within the lycopene ɛ-cyclase gene. In contrast, no homolog of the plant violaxanthin de-epoxidase (VDE) gene was found. Molecular markers were used to map the npq1 mutation, which affects VDE activity, as a first step toward the map-based cloning of the NPQ1 gene.  相似文献   
98.
We propose a simplified alternative method for quantifying the partitioning of excitation energy between photochemistry, fluorescence and thermal dissipation. This alternative technique uses existing well-defined quantum efficiencies such as Phi(PS II), leaving no 'excess' efficiency unaccounted for, effectively separates regulated and constitutive thermal dissipation processes, does not require the use of F(o) and F'(o) measurements and gives very similar results to the method proposed by Kramer et al. [(2004) Photosynth Res 79: 209-218]. We demonstrate the use of the technique using chlorophyll fluorescence measurements in grapevine leaves and observe a high dependence on thermal dissipation processes (up to 75%) at both high light and low temperature.  相似文献   
99.
Pulse modulated fluorescence has increasingly been used as an ecological tool to examine changes in the vertical distribution of microphytobenthic cells within the upper layers of estuarine sediments (most often using the minimum fluorescence yield F(o)) as well as to indicate the health of the community (using the maximum PS II quantum efficiency F(v)/F(m)). However, the practicalities of in situ measurements, often dictates that short dark adaptation periods must be used ( approximately 15 min). The use of far-red light as an alternative to dark adaptation was investigated in natural migratory microphytobenthic biofilms and artificial non-migratory biofilms. Prolonged periods of darkness ( approximately 24 h) were not adequate to achieve 'true' measurements of F(o) and F(v)/F(m), which require complete oxidation of Q(A) and full reversal of non-photochemical quenching (NPQ). In some instances, stable values were only achieved using far-red light. Prolonged exposure to dark/far-red light led to a downwards migration of cells in natural assemblages, as seen by a reduction in both F(o) and the maximum fluorescence yield (F(m)). In non-migratory biofilms, F(m) increased in the dark and far-red treatments, indicating a reversal of NPQ, whereas F(o) decreased in far-red light but increased in the dark. It is suggested that far-red light and darkness differentially affected the balance between NPQ reversal and Q(A) oxidation that lead to the measured F(o) yield. The use of far-red light as an alternative to dark adaptation is discussed and the implications of short (e.g., 15 min) dark adaptation times used in situ are discussed with reference to the vertical migration of cells within sediment biofilms.  相似文献   
100.
Hemocyanins are oxygen carriers of arthropods and molluscs. The oxygen is bound between two copper ions, forming a Cu(II)-O2 2–-Cu(II) complex. The oxygenated active sites create two spectroscopic signals indicating the oxygen load of the hemocyanins: first, an absorption band at 340 nm which is due to a ligand-to-metal charge transfer complex, and second, a strong quenching of the intrinsic tryptophan fluorescence, the cause of which has not been definitively identified. We showed for the 4×6-mer hemocyanin of the tarantula Eurypelma californicum that the fluorescence quenching of oxygenated hemocyanin is caused exclusively by fluorescence resonance energy transfer (FRET). The tarantula hemocyanin consists of 24 subunits containing 148 tryptophans acting as donors and 24 active sites as acceptors. The donor–acceptor distances are determined on the basis of a closely related crystal structure of the horseshoe crab Limulus polyphemus hemocyanin subunit II (68–79% homology). Calculation of the expected fluorescence quenching and the measured transfer efficiency coincided extraordinary well, so that the fluorescence quenching of oxygenated tarantula hemocyanin can be completely explained by Förster transfer. This results explain for the first time, on a molecular basis, why fluorescence quantum yield can be used as an intrinsic signal for oxygen load of at least one arthropod hemocyanin, in particular that from the tarantula.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号