首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   309篇
  免费   26篇
  国内免费   12篇
  2024年   1篇
  2023年   10篇
  2022年   4篇
  2021年   7篇
  2020年   12篇
  2019年   22篇
  2018年   12篇
  2017年   9篇
  2016年   10篇
  2015年   8篇
  2014年   8篇
  2013年   42篇
  2012年   8篇
  2011年   13篇
  2010年   4篇
  2009年   9篇
  2008年   11篇
  2007年   14篇
  2006年   15篇
  2005年   8篇
  2004年   7篇
  2003年   8篇
  2002年   6篇
  2001年   8篇
  2000年   2篇
  1999年   3篇
  1998年   5篇
  1997年   5篇
  1996年   2篇
  1994年   3篇
  1992年   2篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1985年   8篇
  1984年   3篇
  1983年   5篇
  1982年   5篇
  1981年   3篇
  1980年   6篇
  1979年   4篇
  1978年   2篇
  1977年   7篇
  1976年   4篇
  1975年   6篇
  1974年   4篇
  1973年   6篇
  1972年   3篇
排序方式: 共有347条查询结果,搜索用时 31 毫秒
21.
An inulinase was highly purified from the culture broth of Penicillium purpurogenum by chromatographies on DEAE-Sepharose CL-6B, Toyopearl HW-65, and Bio-Gel P-100. The enzyme was homogeneous by disc electrophoretic analysis. The molecular weight was 6.4 × 104 by SDS-disc electrophoresis and gel filtration on Bio-Gel P-150. The isoelectric point was pH 3.6 by isoelectric focusing. The enzyme hydrolyzed inulin rapidly, but did not affect sucrose. By paper chromatography analysis, the major products from inulin were tri-, tetra-, penta-, and hexa-saccharides. The substrate specificity of the enzyme on hydrolyses of fructo-oligosaccharides[1F(1-β-d-fructofuranosyl)n sucrose (n = 1 to 6 and n (average of polymerization degree) = 8)] were examined. The Km values and relative maximum velocities for the hydrolyses of inulin and fructo-oligosaccharides (GFn, n = 2 to 7 and n = 9) were as follows: inulin, (DP = 35) 0.21 mM and 100; GF9, 0.24 mM and 86.5; GF7, 0.33 mM and 132; GF6, 0.85 mM and 71.2; GF5, 3.8 mM and 25.4; GF4, 2.8 mM and 28.8; GF3, (nystose) 16 mM and 0.8; GF2 (1-kestose), 8.4 mM and 0.2. The molecular activities for the hydrolyses of fructo-oligosaccharides (GFn, n = 2 to 6) were increased depending on the degree of polymerization of fructosyl residues, and were nearly constant if the polymerization degree was over seven. These results strongly suggested that the endo-type inulinase from Penicillium purpurogenum had a subsite structure consisting of at least seven subsites.  相似文献   
22.
1. Aminoacyl tRNA synthetase was extracted from the silkgland of silkworm (Bombyxmori Linné) and fractionated on a DEAE-cellulose column. Activities were estimated by ATP-PPi exchange reaction as well as glycyl tRNA formation.

2. Two peaks, A and B, having ATP-PPi exchange activity were found in the separated fractions, respectively. There was also observed a marked difference between the both peaks with respect to the pH optimum and activity dependence on MgCl2 concentration.

3. Peak A showed no activity of glycyl tRNA formation. Only a part of peak B coincided with the activity of glycyl tRNA formation. The activities of both the ATP-PPi exchange reaction and glycyl tRNA formation were found to be dependent on MgCl2 concentration, and the optimum concentration was different between two peaks.

4. It also seemed to exist two peaks of activities, a and b, in glycyl tRNA formation which could be separated with a DEAE-cellulose column.  相似文献   
23.
槲皮素具有诱导细胞自噬、抑制肿瘤细胞增殖等抗癌功能,但其诱导细胞自噬的分子机制还不太清楚. 本文通过激光共聚焦显微镜观察槲皮素对Hep G2细胞自噬的影响; Fluo-3 AM和Cyto-IDTM Green Detection Reagent染色标记, 流式细胞术测定了槲皮素对Hep G2细胞内游离钙离子浓度[Ca2+]i 及Ca2+螯合剂BAPTA-AM对自噬水平的影响. 探讨了槲皮素诱导人肝癌细胞 Hep G2自噬过程中[Ca2+]i的变化. 结果表明, 在槲皮素较低浓度范围内(0 ~ 50 μg/mL), 可明显抑制Hep G2细胞增殖, 并以剂量依赖方式诱导细胞自噬. 同时发现,槲皮素刺激Hep G2细胞可使[Ca2+]i明显增加, 进而促进自噬. 而当胞内Ca2+螯合剂 BAPTA-AM存在时, 细胞的自噬水平受到一定的抑制. 这些结果表明,细胞内[Ca2+]i的升高可促进自噬, [Ca2+]i 的降低可能会抑制自噬. Hep G2细胞自噬与细胞内游离钙离子浓度的变化有关系.  相似文献   
24.
Isoniazid (INH) is one of the most commonly used antituberculosis drugs, but its clinical applications have been limited by severe hepatic toxicity. Quercetin (Que), a natural flavonoid, has been proved to have many medicinal properties. This study aimed to clarify the possible protective effects of Que against INH‐induced hepatotoxicity using HepG2 cells. Our results indicated that Que significantly increased cell viability, superoxide dismutase, and GSH levels, while decreased alanine aminotransferase/aspartate aminotransferase levels. Besides, Que significantly abrogated INH‐induced cell apoptosis by upregulating the expression levels of Bcl‐2 and decreasing the levels of Bax, cleaved caspase‐3, and cleaved caspase‐9. Furthermore, Que obviously reversed the inhibition of INH on Sirtuin 1 (SIRT1) expression and extracellular signal‐regulated kinase (ERK) phosphorylation. Next, the SIRT1 inhibitor EX527 blocked the enhancement of Que upon ERK phosphorylation. Notably, EX527 partially abolished the beneficial effects of Que. In brief, our results provided the first evidence that Que protected against INH‐induced HepG2 cells by regulating the SIRT1/ERK pathway.  相似文献   
25.
The upregulation of nociceptive ion channels expressed in dorsal root ganglia (DRG) contributes to the development and retaining of diabetic pain symptoms. The flavonoid quercetin (3,3′,4′,5,7-pentahydroxyflavone) is a component extracted from various fruits and vegetables and exerts anti-inflammatory, analgesic, anticarcinogenic, antiulcer, and antihypertensive effects. However, the exact mechanism underlying quercetin's analgesic action remains poorly understood. The aim of this study was to investigate the effects of quercetin on diabetic neuropathic pain related to the P2X4 receptor in the DRG of type 2 diabetic rat model. Our data showed that both mechanical withdrawal threshold and thermal withdrawal latency in diabetic rats treated with quercetin were higher compared with those in untreated diabetic rats. The expression levels of P2X4 messenger RNA and protein in the DRG of diabetic rats were increased compared with the control rats, while quercetin treatment significantly inhibited such enhanced P2X4 expression in diabetic rats. The satellite glial cells (SGCs) enwrap the neuronal soma in the DRG. Quercetin treatment also lowered the elevated coexpression of P2X4 and glial fibrillary acidic protein (a marker of SGCs) and decreased the upregulation of phosphorylated p38 mitogen-activated protein kinase (p38MAPK) in the DRG of diabetic rats. Quercetin significantly reduced the P2X4 agonist adenosine triphosphate-activated currents in HEK293 cells transfected with P2X4 receptors. Thus, our data demonstrate that quercetin may decrease the upregulation of the P2X4 receptor in DRG SGCs, and consequently inhibit P2X4 receptor-mediated p38MAPK activation to relieve the mechanical and thermal hyperalgesia in diabetic rats.  相似文献   
26.
27.
Quercetin was the best inducer for the production of a highly glucose-tolerant, extracellular -glucosidase in Aspergillus niger and Aspergillus oryzae. The enzyme was separated from the major and common -glucosidase by gel filtration and that from Aspergillus oryzae further purified by ion-exchange chromatography. It was highly resistant to glucose inhibition (Ki= 953 mM), had a pI of 4.2, optimum pH of 4.5–6.0 and a molecular mass of 30 kDa according to gel filtration. The enzyme was active against cellobiose and alkyl glucosides.  相似文献   
28.
PUFA metabolites have a profound effect on inflammatory diseases and cancer progression. Blocking their production by inhibiting PUFA metabolizing enzymes (dioxygenases: cyclooxygenases and LOXs) might be a successful way to control and relieve such problems, if we learn to better understand their actions at a molecular level. Compounds with strong antioxidative and free radical scavenging properties, such as polyphenols, could be effective in blocking PUFA activities, and natural flavonoids possess such qualities. Quercetin belongs to the group of natural catecholic compounds and is known as a potent, competitive inhibitor of LOX. Structural analysis reveals that quercetin entrapped within LOX undergoes degradation, and the resulting compound has been identified by X-ray analysis as protocatechuic acid (3,4-dihydroxybenzoic acid) positioned near the iron site. Its C3-OH group points toward His523, C4-OH forms a hydrogen bond with O=C from the enzyme's C-terminus, and the carboxylic group is incorporated into the hydrogen bonding network of the active-site neighborhood via Gln514. This unexpected result, together with our previous observations concerning other polyphenols, yields new evidence about the metabolism of natural flavonoids. These compounds might be vulnerable to the co-oxidase activity of LOX, leading to enzyme-stimulated oxidative degradation, which results in an inhibitor of a lower molecular weight.  相似文献   
29.
Antioxidant properties and cytoprotective activity of flavonoids (rutin, dihydroquercetin, quercetin, epigallocatechin gallate (EGCG), epicatechin gallate (ECG)) were studied. All these compounds inhibited both NADPH- and CCl4-dependent microsomal lipid peroxidation, and the catechins were the most effective antioxidants. The I 50 values calculated for these compounds by regression analysis were close to the I 50 value of the standard synthetic antioxidant ionol (2,6-di-tert-butyl-4-methylphenol). The antiradical activity of flavonoids to O 2 was studied in a model photochemical system. Rate constants of the second order reaction obtained by competitive kinetics suggested flavonoids to be more effective scavengers of oxygen anion-radicals than ascorbic acid. By competitive replacement all flavonoids studied were shown to be chelating agents capable of producing stable complexes with transition metal ions (Fe2+, Fe3+, Cu2+). The flavonoids protected macrophages from asbestos-induced damage, and the protective effect increased in the following series: rutin < dihydroquercetin < quercetin < ECG < EGCG. The cytoprotective effect of flavonoids was in strong positive correlation with their antiradical activity to O 2 .  相似文献   
30.
The 3' hydroxylation of kaempferol forms quercetin with an orthodihydroxy structure having two neighboring hydroxyl groups that could theoretically chelate with metal ions and mediate oxidative phenomena. Colorless flavonoids were purified by high pressure liquid chromatography (HPLC) and screened by diode array analysis. The accumulation of quercetin derivatives in Arabidopsis was coordinately regulated with flavonoid biosynthesis in a chalcone isomerase mutant having reduced flux through the biosynthetic pathway, but not within differing wild-type tissues, where seedling, floral, and leaf tissue have a reduced ratio of quercetin to kaempferol derivatives, respectively. The accumulation of lipid peroxidation products in kaempferol proficient mutant seedlings was indistinguishable from that in quercetin proficient wild-type seedlings, leaving no evidence for the role of quercetin antioxidants. However, laser scanning confocal microscopy revealed quercetin derivatives lining the tonoplast of diphenylboric acid 2-aminoethyl ester-stained Arabidopsis seedling tissue and floral papillae, and Norfluorazon induced oxidative stress decreased the most lipophilic of HPLC purified quercetin derivatives. Its potential involvement with lipophyllic oxidative phenomena may warrant further study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号