首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6161篇
  免费   362篇
  国内免费   637篇
  2024年   8篇
  2023年   80篇
  2022年   122篇
  2021年   130篇
  2020年   152篇
  2019年   186篇
  2018年   185篇
  2017年   136篇
  2016年   155篇
  2015年   216篇
  2014年   577篇
  2013年   571篇
  2012年   458篇
  2011年   428篇
  2010年   324篇
  2009年   391篇
  2008年   421篇
  2007年   421篇
  2006年   372篇
  2005年   320篇
  2004年   234篇
  2003年   192篇
  2002年   179篇
  2001年   141篇
  2000年   94篇
  1999年   91篇
  1998年   93篇
  1997年   106篇
  1996年   84篇
  1995年   58篇
  1994年   34篇
  1993年   31篇
  1992年   24篇
  1991年   24篇
  1990年   12篇
  1989年   13篇
  1988年   10篇
  1987年   7篇
  1986年   8篇
  1985年   15篇
  1984年   8篇
  1983年   11篇
  1982年   9篇
  1981年   7篇
  1980年   3篇
  1979年   5篇
  1978年   5篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
排序方式: 共有7160条查询结果,搜索用时 15 毫秒
111.
112.
Caenorhabditis elegans is a leading model organism for studying the basic mechanisms of aging. Progress has been limited, however, by the lack of an automated system for quantitative analysis of longevity and mean lifespan. To address this barrier, we developed ‘WormFarm’, an integrated microfluidic device for culturing nematodes. Cohorts of 30–50 animals are maintained throughout their lifespan in each of eight separate chambers on a single WormFarm polydimethylsiloxane chip. Design features allow for automated removal of progeny and efficient control of environmental conditions. In addition, we have developed computational algorithms for automated analysis of video footage to quantitate survival and other phenotypes, such as body size and motility. As proof‐of‐principle, we show here that WormFarm successfully recapitulates survival data obtained from a standard plate‐based assay for both RNAi‐mediated and dietary‐induced changes in lifespan. Further, using a fluorescent reporter in conjunction with WormFarm, we report an age‐associated decrease in fluorescent intensity of GFP in transgenic worms expressing GFP tagged with a mitochondrial import signal under the control of the myo‐3 promoter. This marker may therefore serve as a useful biomarker of biological age and aging rate.  相似文献   
113.
ABSTRACT

Introduction: Skeletal muscle is the major site of insulin-stimulated glucose uptake and imparts the beneficial effects of exercise, and hence is an important site of insulin resistance in obesity and type 2 diabetes (T2D). Despite extensive molecular biology-oriented research the molecular mechanisms underlying insulin resistance in skeletal muscle remain to be established.

Areas covered: The proteomic capabilities have greatly improved over the last decades. This review summarizes the technical challenges in skeletal muscle proteomics studies as well as the results of quantitative proteomic studies of skeletal muscle in relation to obesity, T2D, and exercise.

Expert commentary: Current available proteomic studies contribute to the view that insulin resistance in obesity and T2D is associated with increased glycolysis and reduced mitochondrial oxidative metabolism in skeletal muscle, and that the latter can be improved by exercise. Future proteomics studies should be designed to markedly intensify the identification of abnormalities in metabolic and signaling pathways in skeletal muscle of insulin-resistant individuals to increase the understanding of the pathogenesis of T2D, but more importantly to identify multiple novel targets of treatment of which at least some can be safely targeted by novel drugs to treat and prevent T2D and reduce risk of cardiovascular disease.  相似文献   
114.
An important challenge for proteomics is the ability to compare protein levels across biological samples. Since their introduction, isotopic and isobaric peptide labeling have played an important role in relative quantitative comparisons of proteomes. One important drawback of most of the isotopic-labeling techniques is an increase in sample complexity. This problem was successfully addressed with the construction of isobaric labeling strategies, such as isobaric tag for relative and absolute quantification (iTRAQ), tandem mass tagging, the cleavable isobaric affinity tag, dimethylated leucines and isobaric peptide termini labeling. Furthermore, numerous applications for multiplexing using iTRAQ and tandem mass tagging have been reported.  相似文献   
115.
It has long been understood that it is proteins, expressed and post-translationally modified, that are the primary regulators of both the fate and the function of cells. The ability to measure differences in the expression of the constellation of unique protein forms (proteoforms) with complete molecular specificity has the potential to sharply improve the return on investment for mass spectrometry-based proteomics in translational research and clinical diagnostics.  相似文献   
116.
Currently, neuroproteomic approaches aimed at the profiling of total brain areas generally mirror the expression of the most abundant proteins, but fail to uncover less abundant proteins. By contrast, the focus on typical brain subproteomes, (e.g., synaptic vesicles, synaptic terminal membranes or the postsynaptic density), may give a more specific insight into brain function. Subproteomes are accessible via several strategies, including subcellular fractionation or affinity-based pull-down approaches. Combined with mass spectrometric quantification approaches, subcellular proteomics is expected to reveal differences in the protein constitution of related cellular organelles. Focusing on novel functions and mechanistic models, we review recent data on the analysis of brain-derived organelles and subproteomes, including presynaptic termini, synaptic vesicles, neuronal plasma membranes, postsynaptic density and neuromelanin granules, which were identified as novel lysosome-related organelles within the human brain.  相似文献   
117.
118.
Many cancers cause malignant effusions. The presence of malignant cells in effusions has implications in diagnosis, tumour staging and prognosis. The detection of malignant cells currently presents a challenge for cytopathologists. New adjunctive methods are needed. Although the effusions provide excellent materials for molecular assay, the available molecular markers are extremely limited, which hinders its clinical application. MN/CA9 has proved to be a valuable marker in many cancers such as lung, breast, colon, kidney, etc. The present study was to evaluate MN/CA9 as a new molecular marker for the detection of cancer cells in pleural effusions. Seventy-one pleural effusions including 59 malignant effusions from patients with cancer, and 12 patients with benign diseases as a control, were subjected to RT-PCR for detection of MN/CA9 gene expression. MN/CA9 gene expression was detected in 53/59 (89.8%) pleural effusions from cancer patients (15/16 for breast cancers, 10/11 for lung cancers, 4/4 for ovary cancers, 2/3 for colon–rectal cancers, 5/6 for cancers of unknown site, 7/8 for mesothelioma and 10/11 for other cancers). Furthermore, MN/CA9 was positive in 13/18 (72.2%) of cytologically negative effusions of cancer patients. MN/CA9 was detected in only 1/12 (8.3%) effusions from the control patients (p<0.01). The sensitivity and specificity of MN/CA9 gene expression were, respectively, 89.8% and 91.7%. Our preliminary results suggest that MN/CA9 could be a potential marker for the detection of malignant cells in effusions. A large-scale study is needed to confirm these results.  相似文献   
119.
Prostate cancer (CaP) is the second leading malignancy in men. The role of epithelial cell adhesion molecule (EpCAM), also known as CD326, in CaP progression and therapeutic resistance is still uncertain. Here, we aimed to investigate the roles of EpCAM in CaP metastasis and chemo/radioresistance. Expression of EpCAM in CaP cell lines and human CaP tissues was assessed using immunofluorescence and immunohistochemistry, respectively. EpCAM was knocked down (KD) in PC-3, DU145 and LNCaP-C4-2B cells using small interfering RNA (siRNA), and KD results were confirmed by confocal microscope, Western blotting and quantitative real time polymerase chain reaction (qRT-PCR). Cell growth was evaluated by proliferation and colony formation assays. The invasive potential was assessed using a matrigel chamber assay. Tumorigenesis potential was measured by a sphere formation assay. Chemo-/radiosensitivity were measured using a colony formation assay. Over-expression of EpCAM was found in primary CaP tissues and lymph node metastases including cancer cells and surrounding stromal cells. KD of EpCAM suppressed CaP proliferation and invasive ability, reduced sphere formation, enhanced chemo-/radiosensitivity, and down-regulated E-cadherin, p-Akt, p-mTOR, p-4EBP1 and p-S6K expression in CaP cells. Our findings suggest that EpCAM plays an important role in CaP proliferation, invasion, metastasis and chemo-/radioresistance associated with the activation of the PI3K/Akt/mTOR signaling pathway and is a novel therapeutic target to sensitize CaP cells to chemo-/radiotherapy.  相似文献   
120.
《Biomarkers》2013,18(1):23-29
Pulmonary arteriovenous malformations (PAVMs), which can lead to life-threatening bleeding and other complications, have been reported to occur in 30–50% of patients with hereditary hemorrhagic telangiectasia (HHT). Circulating microRNAs (miRNAs) have emerged as new biomarkers for human diseases. This study was conducted to explore circulating miRNAs as biomarkers for the screening of HHT patients with PAVMs. MicroRNA array analysis revealed eight altered circulating miRNAs in patients with PAVMs. Real time RT-PCR showed that the levels of circulating miR-210 were significantly elevated in HHT patients with PAVMs but not changed in patients without PAVMs as compared with healthy controls. Circulating miR-210 therefore may be used as a new and sensitive biomarker for the screening of patients with HHT for clinically significant PAVMs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号