首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   5篇
  国内免费   11篇
  151篇
  2024年   6篇
  2023年   25篇
  2022年   31篇
  2021年   38篇
  2020年   23篇
  2019年   12篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2011年   1篇
排序方式: 共有151条查询结果,搜索用时 12 毫秒
141.
142.
143.
Non-small cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer. Cisplatin is commonly used in the treatment of many malignant tumours including NSCLC. The innate drug sensitivity greatly affects the clinical efficacy of cisplatin-based chemotherapy. As a plasma membrane adhesion molecule, amphoterin-induced gene and ORF-2 (AMIGO2) initially identified as a neurite outgrowth factor has been recently found to play a crucial role in cancer occurrence and progression. However, it is still unclear whether AMIGO2 is involved in innate cisplatin sensitivity. In the present study, we provided the in vitro and in vivo evidences indicating that the alteration of AMIGO2 expression triggered changes of innate cisplatin sensitivity as well as cisplatin-induced pyroptosis in NSCLC. Further results revealed that AMIGO2 might inhibit cisplatin-induced activation of (caspase-8 and caspase-9)/caspase-3 via stimulating PDK1/Akt (T308) signalling axis, resulting in suppression of GSDME cleavage and the subsequent cell pyroptosis, thereby decreasing the sensitivity of NSCLC cells to cisplatin treatment. The results provided a new insight that AMIGO2 regulated the innate cisplatin sensitivity of NSCLC through GSDME-mediated pyroptosis.  相似文献   
144.
Pyroptosis is involved in ischemic cardiomyopathy (ICM). The study aimed to investigate the pyroptosis-related genes and clarify their diagnostic value in ICM. The bioinformatics method identified the differential pyroptosis genes between the normal control and ICM samples from online datasets. Then, protein–protein interaction (PPI) and function analysis were carried out to explore the function of these genes. Following, subtype analysis was performed using ConsensusClusterPlus, functions, immune score, stromal score, immune cell proportion and human leukocyte antigen (HLA) genes between subtypes were investigated. Moreover, optimal pyroptosis genes were selected using the least absolute shrinkage and selection operator (LASSO) analysis to construct a diagnostic model and evaluate its effectiveness using receiver operator characteristic (ROC) analysis. Twenty-one differential expressed pyroptosis genes were identified, and these genes were related to immune and pyroptosis. Subtype analysis identified two obvious subtypes: sub-1 and sub-2. And LASSO identified 13 optimal genes used to construct the diagnostic model. The diagnostic model in ICM diagnosis with the area under ROC (AUC) was 0.965. Our results suggested that pyroptosis was tightly associated with ICM.  相似文献   
145.
Pyroptosis is a form of programmed cell death (PCD) that plays a vital role in immunity and diseases. Although it was recently reported that chemotherapy drugs can induce pyroptosis through caspase-3-dependent cleavage of gasdermin E (GSDME), the role of pyroptosis in osteosarcoma (OS) with dioscin is less understood. In this study, we explored the effects of dioscin on OS in vitro and in vivo and further elucidated the underlying molecular mechanisms and found that dioscin-triggered pyroptosis in GSDME-dependent cell death and that GSDME-N was generated by caspase-3. Furthermore, dioscin inhibited cancer cell growth by inducing G2/M arrest and apoptosis through the JNK/p38 pathway. In vivo, dioscin significantly inhibited OS proliferation. Taken together, our results demonstrate that dioscin can induce apoptosis through the JNK/p38 pathway and GSDME-dependent pyroptosis in OS, identifying it as a potential therapeutic drug for treatment of this disease.  相似文献   
146.
《Molecular cell》2022,82(13):2385-2400.e9
  1. Download : Download high-res image (173KB)
  2. Download : Download full-size image
  相似文献   
147.
Saikosaponin-D (SSD), an active ingredient in Bupleurum chinense, exerts anticancer effects in various cancers by inhibiting cancer proliferation and inducing apoptosis. However, whether SSD can induce other forms of cell death is unknown. The current study aims to demonstrate that SSD can induce pyroptosis in non-small-cell lung cancer. In this study, HCC827 and A549 non-small-cell lung cancer cells were treated with different concentrations of SSD for 1.5 h. HE and TUNEL staining were used to verify cell damage caused by SSD. Immunofluorescence and western blotting were performed to verify the effect of SSD on the NF-κB/NLRP3/caspase-1/gasdermin D (GSDMD) pathway. Changes in inflammatory factors were detected by ELISAs. Finally, the reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) was introduced to verify that SSD induces pyroptosis through the ROS/NF-κB pathway. The results of the HE and TUNEL staining showed that SSD resulted in balloon-like swelling of NSCLC cells accompanied by increased DNA damage. Immunofluorescence and western blot assays confirmed that SSD treatment activated the NLRP3/caspase-1/GSDMD pathway, stimulated an increase in ROS levels and activated NF-κB in lung cancer cells. The ROS scavenger N-acetylcysteine significantly attenuated SSD-induced NF-κB/NLRP3/caspase-1/GSDMD pathway activation and inhibited the release of the inflammatory cytokines IL-1β and IL-18. In conclusion, SSD induced lung cancer cell pyroptosis by inducing ROS accumulation and activating the NF-κB/NLRP3/caspase-1/GSDMD pathway. These experiments lay the foundation for the application of SSD in the treatment of non-small-cell lung cancer and regulation of the lung cancer immune microenvironment.  相似文献   
148.
Inflammasomes are innate immune mechanisms that promote inflammation by activating the protease caspase-1. Active caspase-1 induces pyroptosis, a necrotic form of regulated cell death, which facilitates the release of intracellular proinflammatory molecules, including IL-1 family cytokines. Recent studies identified mediators of inflammasome-associated cell death and suggested that inflammasomes induce not only pyroptosis, but also apoptosis. Caspase-1 has the potential to induce pyroptosis and apoptosis in a manner that is dependent on the expression of the pyroptosis mediator gasdermin D. Caspase-1-induced apoptosis is mediated by Bid and caspase-7. Caspase-8 is also activated following the formation of inflammasomes and may induce apoptosis. Because inflammasomes contribute to the pathogenesis of inflammatory disorders and host defenses against microbial pathogens, a more detailed understanding of the mechanisms underlying inflammasome-associated cell death may contribute to the development of novel therapeutic strategies for inflammasome-related diseases. Pyroptosis has been implicated in inflammasome-related diseases, and compounds that inhibit this process have been reported. The molecular mechanisms of inflammasome-associated cell death and its physiological implications are discussed herein.  相似文献   
149.
《Current biology : CB》2023,33(7):1282-1294.e5
  1. Download : Download high-res image (230KB)
  2. Download : Download full-size image
  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号