首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3024篇
  免费   151篇
  国内免费   135篇
  3310篇
  2024年   11篇
  2023年   36篇
  2022年   50篇
  2021年   51篇
  2020年   63篇
  2019年   80篇
  2018年   90篇
  2017年   68篇
  2016年   66篇
  2015年   79篇
  2014年   129篇
  2013年   336篇
  2012年   69篇
  2011年   136篇
  2010年   84篇
  2009年   123篇
  2008年   124篇
  2007年   132篇
  2006年   122篇
  2005年   110篇
  2004年   113篇
  2003年   107篇
  2002年   103篇
  2001年   75篇
  2000年   67篇
  1999年   58篇
  1998年   75篇
  1997年   62篇
  1996年   39篇
  1995年   63篇
  1994年   35篇
  1993年   54篇
  1992年   41篇
  1991年   47篇
  1990年   41篇
  1989年   47篇
  1988年   39篇
  1987年   31篇
  1986年   27篇
  1985年   34篇
  1984年   40篇
  1983年   23篇
  1982年   26篇
  1981年   19篇
  1980年   16篇
  1979年   22篇
  1978年   18篇
  1977年   8篇
  1975年   4篇
  1973年   7篇
排序方式: 共有3310条查询结果,搜索用时 15 毫秒
51.
In a previous work, we presented evidence for the presence of a protein encoded by At5g50600 in oil bodies (OBs) from Arabidopsis thaliana [P. Jolivet, E. Roux, S. D'Andrea, M. Davanture, L. Negroni, M. Zivy, T. Chardot, Protein composition of oil bodies in Arabidopsis thaliana ecotype WS, Plant Physiol. Biochem. 42 (2004) 501-509]. Using specific antibodies and proteomic techniques, we presently confirm the existence of this protein, which is a member of the short-chain steroid dehydrogenase reductase superfamily. We have measured its activity toward various steroids (cholesterol, dehydroepiandrosterone, cortisol, corticosterone, estradiol, estrone) and NAD(P)(H), either within purified OBs or as a purified bacterially expressed chimera. Both enzymatic systems (OBs purified from A. thaliana seeds as well as the chimeric enzyme) exhibited hydroxysteroid dehydrogenase (HSD) activity toward estradiol (17beta-hydroxysteroid) with NAD+ or NADP+, NADP+ being the preferred cofactor. Low levels of activity were observed with cortisol or corticosterone (11beta-hydroxysteroids), but neither cholesterol nor DHEA (3beta-hydroxysteroids) were substrates, whatever the cofactor used. Similar activity profiles were found for both enzyme sources. Purified OBs were found to be also able to catalyze estrone reduction (17beta-ketosteroid reductase activity) with NADPH. The enzyme occurring in A. thaliana OBs can be classified as a NADP+-dependent 11beta-,17beta-hydroxysteroid dehydrogenase/17beta-ketosteroid reductase. This enzyme probably corresponds to AtHSD1, which is encoded by At5g50600. However, its physiological role and substrates still remain to be determined.  相似文献   
52.
Manganese in the oxygen-evolving complex is a physiological electron donor to Photosystem II. PS II depleted of manganese may oxidize exogenous reductants including benzidine and Mn2+. Using flash photolysis with electron spin resonance detection, we examined the room-temperature reaction kinetics of these reductants with Yz +, the tyrosine radical formed in PS II membranes under illumination. Kinetics were measured with membranes that did or did not contain the 33 kDa extrinsic polypeptide of PS II, whose presence had no effect on the reaction kinetics with either reductant. The rate of Yz + reduction by benzidine was a linear function of benzidine concentration. The rate of Yz + reduction by Mn2+ at pH 6 increased linearly at low Mn2+ concentrations and reached a maximum at the Mn2+ concentrations equal to several times the reaction center concentration. The rate was inhibited by K+, Ca2+ and Mg2+. These data are described by a model in which negative charge on the membrane causes a local increase in the cation concentration. The rate of Yz + reduction at pH 7.5 was biphasic with a fast 400 s phase that suggests binding of Mn2+ near Yz + at a site that may be one of the native manganese binding sites.Abbreviations PS II Photosystem II - YD tyrosine residue in Photosystem II that gives rise to the stable Signal II EPR spectrum - Yz tyrosine residue in Photosystem II that mediates electron transfer between the reaction center chlorophyll and the site of water oxidation - ESR electron spin resonance - DPC diphenylcarbazide - DCIP dichlorophenolindophenol  相似文献   
53.
Changes in protein and fatty acid compositions of flounder sarcoplasmic reticulum during NADH plus ascorbate-dependent lipid peroxidationin vitro were related to the ability of the sarcoplasmic reticulum to sequester Ca+2. Progressive accumulation of high-molecular-weight protein components occurred concomitantly with loss of Ca+2-sequestering activity. Part of this polymerized protein may be the dimer or trimer of Ca+2, Mg+2-ATPase. Loss in Ca+2, Mg+2-ATPase protein could account for over 60% of the polymerized protein. Rate of loss of polyunsaturated fatty acids was C22:6>C20:4>C20:5>C22:5. Loss of polyunsaturated fatty acids and accumulation of thiobarbituric acid-reactive substances occurred concomitantly with protein polymerization.  相似文献   
54.
Chromatophores isolated from the marine phototrophic bacterium Rhodobacter sulfidophilus were found to photoreduce NAD with sulfide as the electron donor. The apparent K m for sulfide was 370 M and the optimal pH was 7.0. The rate of NAD photoreduction in chromatophore suspensions with sulfide as the electron donor (about 7–12 M/h·mol Bchl) was approximately onetenth the rate of sulfide oxidation in whole cell suspensions. NAD photoreduction was inhibited by rotenone, carbonyl cyanide-m-chlorophenylhydrazone, and antimycin A. Sulfide reduced ubiquinone in the dark when added to anaerobic chromatophore suspensions. These results suggest that electron transport from sulfide to NAD involves an initial dark reduction of ubiquinone followed by reverse electron transport from ubiquinol to NAD mediated by NADH dehydrogenase.Abbreviations Bchl bacteriochlorophyll - CCCP carbonyl cyanide-m-chlorophenylhydrazone - MOPS 3(N-morpholino)-propane sulfonate - Uq ubiquinone  相似文献   
55.
Bacterial oxidation of sulphide under denitrifying conditions   总被引:11,自引:0,他引:11  
Anoxic H2S oxidation under denitrifying conditions produced sulphur and sulphate in almost equal proportions by an isolated Thiobacillus denitrificans. Under nitrate reducing conditions the rate of sulphide oxidation was approximately 0.9 g sulphide/g biomass h. Nitrate was reduced to nitrite and accumulated during sulphide oxidation. Above 100 mg nitrite/l, the sulphide oxidation rate declined and at 500 mg/l it was totally arrested. The optimum pH for the anoxic sulphide oxidation was around 7.5. Concentrations of sulphate 1500 mg/l and acetate 400 mg/l had no effect on anoxic sulphide oxidation.  相似文献   
56.
Paraoxonase 1 (PON1) protects the oxidative modification of low-density lipoprotein (LDL) and is a major anti-atherosclerotic protein component of high-density lipoprotein (HDL). Quercetin, a ubiquitous plant flavonoid, has been shown to have a number of bioactivities and may offer a variety of potential therapeutic uses. We explored the roles of quercetin in the regulation of PON1 expression, serum and liver activity and protective capacity of HDL against LDL oxidation in rats. Compared to the pair-fed control group, feeding quercetin (10 mg/L) in the liquid diet for 4 weeks increased (a) hepatic expression of PON1 by 35% (p < 0.01), (b) serum and liver PON1 activities by 29% (p < 0.05) and 57% (p < 0.01), respectively, and (c) serum homocysteine thiolactonase (HCTL) activity by 23% (p < 0.05). Correspondingly, the lag time of low-density lipoprotein (LDL) oxidation was increased by >3-fold (p < 0.001) with plasma HDL from quercetin-fed group compared to the HDL from control group. Our data suggest that quercetin has antiatherogenic effect by up regulating PON1 gene expression and its protective capacity against LDL oxidation.  相似文献   
57.
Objective: To assess the effects of negative energy balance on the metabolic response of a meal containing either glucose or fructose as the primary source of carbohydrate after exercise in obese individuals in energy balance, or negative energy balance. Research Methods and Procedures: Fourteen adults with mean body mass index (BMI) 30.3 ± 1 kg/m2, age 26 ± 2 years, and weight 93.5 ± 5.4 kg, adhered to an energy‐balanced (EB) or a negative energy‐balanced (NEB) diet for 6 days. On Day 7, subjects exercised at 70% VO2peak for 40 minutes then consumed either high glucose (50 g of glucose, HG) or high fructose (50 g of fructose, HF) liquid meal. Substrate utilization was measured by indirect calorimetry for 3 hours. Blood samples were collected before exercise and 0, 30, 60, 120, and 180 minutes after consuming the meal. Results: The HG produced 15.9% greater glycemic (p < 0.05) and 30.9% larger insulinemic (p < 0.05) responses than the HF under both EB and NEB conditions. After the NEB diet, carbohydrate and fat oxidation did not differ for HG and HF. In contrast, carbohydrate oxidation increased 31%, and fat oxidation decreased 39% with HF compared with HG after the EB diet. Thus, HF and HG consumed after exercise produced marked differences in macronutrient oxidation when obese subjects followed an EB diet, but no difference when adhering to a NEB diet. Discussion: The data suggest that the use of fructose in supplements/meals may provide no additional benefit in terms of substrate utilization during a weight loss program involving diet and exercise.  相似文献   
58.
The purpose of this study was to investigate the effect of metal-catalyzed oxidation by H2O2 on the structure, oligomerization, and chaperone function of αA- and αB-crystallins. Recombinant αA-and αB-crystallins were prepared by expressing them in E. coli and purifying by size-exclusion chromatography. They were incubated with 1.5 mM H2O2 and 0.1 mM FeCl3 at 37 C for 24 hrs and the reaction was stopped by adding catalase. Structural changes due to oxidation were ascertained by circular dichroism (CD) measurements and chaperone activity was assayed with alcohol dehydrogenase (ADH) and insulin as target proteins. The oligomeric nature of the oxidized proteins was assessed by molecular sieve HPLC. The secondary structure of the oxidized αA- and αB-crystallins has been substantially altered due to significant increase in random coils, in addition to decrease in β-sheet or α-helix contents. The tertiary structure also showed significant changes indicative of different mode of folding of the secondary structural elements. Chaperone function was significantly compromised as supported by nearly 50% loss in chaperone activity. Oxidation also resulted in the formation of higher molecular weight (HMW) proteins as well as lower molecular weight (LMW) proteins. Thus, oxidation leads to disintegration of the oligomeric structure of αA- and αB-crystallins. Chaperone activity of the HMW fraction is normal whereas the LMW fraction lacks any chaperone activity. So, it appears that the formation of the LMW proteins is the primary cause of the chaperone activity loss due to oxidation.  相似文献   
59.
马若潺  魏晓梦  何若 《生态学杂志》2017,28(6):2047-2054
甲烷生物氧化在全球大气甲烷平衡和温室气体的控制中起着重要作用.氧气是甲烷生物氧化过程中的重要影响因素之一.生境中氧浓度不仅影响好氧甲烷氧化菌的种群结构、活性及甲烷碳的分配,而且好氧甲烷氧化菌在不同氧浓度下具有不同的代谢途径.理解低氧生境中好氧甲烷氧化菌的缺氧耐受机理和甲烷生物氧化过程,对甲烷驱动型生态系统的碳循环和生物多样性有着重要意义.本文以好氧甲烷氧化菌为对象,综述了低氧生境中好氧甲烷氧化菌的活性及其种群结构、好氧甲烷氧化菌的缺氧耐受机理以及低氧生境中甲烷氧化菌与非甲烷氧化菌的关系,并对今后的研究方向进行了展望.  相似文献   
60.
The presence of peroxisomes in mammalian intestine has been revealed formerly by catalase staining combined with electron microscopy. Despite the central role of intestine in lipid uptake and the established importance of peroxisomes in different lipid‐related pathways, few data are available on the physiological role of peroxisomes in intestinal metabolism, more specifically, α‐, β‐oxidation, and etherlipid synthesis. Hence, the peroxisomal compartment was analyzed in more detail in mouse intestine. On the basis of immunohistochemistry, the organelles are mainly confined to the epithelial cells. The expression of the classical peroxisome marker catalase was highest in the proximal part of jejunum and decreased along the tract. PEX14 showed a similar profile, but was still substantial expressed in large intestinal epithelium. Immunoblotting of epithelial cells, isolated from the different segments, showed also such gradient for some enzymes, ie, catalase, ACOX1, and D‐specific multifunctional protein 2, and for the ABCD1 transporter, being high in small and low or absent in large intestine. Other peroxisomal enzymes (PHYH, HACL1, and ACAA1), the ABCD2 and ABCD3 transporters, and peroxins PEX13 and PEX14, however, did not follow this pattern, displaying rather constant signals throughout the intestinal epithelium. The small intestine displayed the highest peroxisomal β‐oxidation activity and is particularly active on dicarboxylic acids. Etherlipid synthesis was high in the large intestine, and colonic cells had the highest content of plasmalogens. Overall, these data suggest that peroxisomes exert different functions according to the intestinal segment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号