首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15266篇
  免费   549篇
  国内免费   388篇
  16203篇
  2024年   12篇
  2023年   114篇
  2022年   253篇
  2021年   250篇
  2020年   279篇
  2019年   470篇
  2018年   482篇
  2017年   217篇
  2016年   302篇
  2015年   430篇
  2014年   843篇
  2013年   1008篇
  2012年   532篇
  2011年   963篇
  2010年   658篇
  2009年   772篇
  2008年   796篇
  2007年   878篇
  2006年   814篇
  2005年   746篇
  2004年   619篇
  2003年   576篇
  2002年   486篇
  2001年   351篇
  2000年   314篇
  1999年   331篇
  1998年   358篇
  1997年   274篇
  1996年   249篇
  1995年   250篇
  1994年   211篇
  1993年   162篇
  1992年   149篇
  1991年   122篇
  1990年   106篇
  1989年   89篇
  1988年   83篇
  1987年   77篇
  1986年   40篇
  1985年   82篇
  1984年   116篇
  1983年   83篇
  1982年   71篇
  1981年   45篇
  1980年   38篇
  1979年   30篇
  1978年   16篇
  1977年   14篇
  1976年   10篇
  1974年   12篇
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
31.
Stable coronary artery disease (CAD) can cause repetitive reversible myocardial ischaemia, and it seems to be possible that reversibly injured myocardium releases small amounts of soluble cytoplasmic proteins. Hence, the aim was to evaluate the effect of stable CAD on baseline serum levels of cardiac biomarkers. We studied 68 consecutive outpatients referred for gated myocardial perfusion imaging. Before a treadmill exercise test, blood samples for measurement of creatine kinase (CK), CK-myocardial band (CK-MB) mass, myoglobin, aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) were collected. Normal perfusion patterns were detected in 29 (43%) patients (group 1) and perfusion defects were detected in 39 (57%) patients (group 2). Baseline serum levels of biomarkers except CK were significantly higher in group 2 (p=0.001). Stable CAD increases baseline levels of CK-MB mass, myoglobin, AST and LDH in the serum and this increase is related to the extent and severity of the perfusion defect and to some extent the ejection fraction of the left ventricle.  相似文献   
32.
33.
34.
The idea of a receptor reserve in mediating cellular function is well known but direct biochemical evidence has not been easy to obtain. This study stems from our results showing that L15 of epidermal growth factor (EGF) is important in both EGF receptor (EGFR) binding and activation, and the L15A analog of human EGF (hEGF) partially uncouples EGFR binding from EGFR activation (Nandagopal et al., [1996] Protein Engng 9:781-788). We address the cellular mechanism of mitogenic signal amplification by EGFR tyrosine kinase in response to L15A hEGF. L15A is partially impaired in receptor dimerization, shown by chemical cross-linking and allosteric activation of EGFR in a substrate phosphorylation assay. Immunoprecipitation experiments reveal, however, that L15A can induce EGFR autophosphorylation in intact murine keratinocytes by utilizing spare receptors, the ratio of total phosphotyrosine content per receptor being significantly lower than that elicited by wild-type. This direct biochemical evidence, based on function, of utilization of a receptor reserve for kinase stimulation suggests that an EGF variant can activate varying receptor numbers to generate the same effective response. L15A-activated receptors can stimulate mitogen-activated protein kinase (MAPK) that is important for mitogenesis. The lack of linear correlation between levels of receptor dimerization, autophosphorylation, and MAPK activation suggests that signal amplification is mediated by cooperative effects. Flow cytometric analyses show that the percentages of cells which proliferate in response to 1 nM L15A and their rate of entry into S-phase are both decreased relative to 1 nM wild-type, indicating that MAPK activation alone is insufficient for maximal stimulation of mitogenesis. Higher concentrations of L15A reverse this effect, indicating that L15A and wild-type differ in the number of receptors each activates to induce the threshold response, which may be attained by cooperative activation of receptor dimers/oligomers by van der Waal's weak forces of attraction. The maintenance of a receptor reserve underscores an effective strategy in cell survival.  相似文献   
35.
Pseudouridine, one major RNA modification, is catabolized into uracil and ribose-5′-phosphate by two sequential enzymatic reactions. In the first step, pseudouridine kinase (PUKI) phosphorylates pseudouridine to pseudouridine 5′-monophosphate. High-fidelity catalysis of pseudouridine by PUKI prevents possible disturbance of in vivo pyrimidine homeostasis. However, the molecular basis of how PUKI selectively phosphorylates pseudouridine over uridine with >100-fold greater efficiency despite minor differences in their Km values has not been elucidated. To investigate this selectivity, in this study we determined the structures of PUKI from Escherichia coli strain B (EcPUKI) in various ligation states. The structure of EcPUKI was determined to be similar to PUKI from Arabidopsis thaliana, including an α/β core domain and β-stranded small domain, with dimerization occurring via the β-stranded small domain. In a binary complex, we show that Ser30 in the substrate-binding loop of the small domain mediates interactions with the hallmark N1 atom of pseudouridine nucleobase, causing conformational changes in its quaternary structure. Kinetic and fluorescence spectroscopic analyses also showed that the Ser30-mediated interaction is a prerequisite for conformational changes and subsequent catalysis by EcPUKI. Furthermore, S30A mutation or EcPUKI complexed with other nucleosides homologous to pseudouridine but lacking the pseudouridine-specific N1 atom did not induce such conformational changes, demonstrating the catalytic significance of the proposed Ser30-mediated interaction. These analyses provide structural and functional evidence for a pseudouridine-dependent conformational change of EcPUKI and its functional linkage to catalysis.  相似文献   
36.
Dysregulation of signaling pathways is believed to contribute to Parkinson's disease pathology and l-DOPA-induced motor complications. Long-lived dopamine (DA) agonists are less likely to cause motor complications by virtue of continuous stimulation of DA receptors. In this study, we compared the effects of the unilateral 6-hydroxydopamine lesion and subsequent treatment with l-DOPA and DA agonist pergolide on signaling pathways in rats. Pergolide caused less pronounced behavioral sensitization than l-DOPA (25 mg/kg, i.p., 10 days), particularly at lower dose (0.5 and 0.25 mg/kg, i.p.). Pergolide, but not l-DOPA, reversed lesion-induced up-regulation of preproenkephalin and did not up-regulate preprodynorphine or DA D3 receptor in the lesioned hemisphere. Pergolide was as effective as l-DOPA in reversing the lesion-induced elevation of ERK2 phosphorylation in response to acute apomorphine administration (0.05 mg/kg, s.c.). Chronic l-DOPA significantly elevated the level of Akt phosphorylation at both Thr(308) and Ser(473) and concentration of phosphorylated GSK3alpha, whereas pergolide suppressed the lesion- and/or challenge-induced supersensitive Akt responses. The data indicate that l-DOPA, unlike pergolide, exacerbates imbalances in the Akt pathway caused by the loss of DA. The results support the hypothesis that the Akt pathway is involved in long-term actions of l-DOPA and may be linked to l-DOPA-induced dyskinesia.  相似文献   
37.
We recently demonstrated that human p38 mitogen-activated protein kinase (MAPK) inhibitors reduced in vitro and in vivo replication of the protozoan parasites Toxoplasma gondii and Encephalitozoon cuniculi. In this study, we assessed the efficacy of five p38 MAPK inhibitors to block the replication of Plasmodium falciparum in human erythrocytes cultured ex vivo and demonstrate that the pyridinylimidazole RWJ67657 and the pyrrolobenzimidazole RWJ68198 reduced P. falciparum replication, yielded trophozoites that were greatly diminished in size at 24 h, and that these two agents interfered with stage differentiation. Interestingly, the chloroquine-resistant strain W2 was significantly more sensitive to these drugs than was the chloroquine-sensitive strain HB3. These results suggest that pyridinylimidazoles and pyrrolobenzimidazoles designed to inhibit human p38 MAPK activation can be developed to treat malaria.  相似文献   
38.
Corticotropin-releasing factor (CRF), its receptors, and signaling pathways that regulate CRF expression and responses are areas of intense investigation for new drugs to treat affective disorders. Here, we report that protein kinase C epsilon (PKCɛ) null mutant mice, which show reduced anxiety-like behavior, have reduced levels of CRF messenger RNA and peptide in the amygdala. In primary amygdala neurons, a selective PKCɛ activator, ψɛRACK, increased levels of pro-CRF, whereas reducing PKCɛ levels through RNA interference blocked phorbol ester-stimulated increases in CRF. Local knockdown of amygdala PKCɛ by RNA interference reduced anxiety-like behavior in wild-type mice. Furthermore, local infusion of CRF into the amygdala of PKCɛ−/− mice increased their anxiety-like behavior. These results are consistent with a novel mechanism of PKCɛ control over anxiety-like behavior through regulation of CRF in the amygdala.  相似文献   
39.
40.
Is it possible to localize a memory trace to a subset of cells in the brain? If so, it should be possible to show: first, that neuronal plasticity occurs in these cells. Second, that neuronal plasticity in these cells is sufficient for memory. Third, that neuronal plasticity in these cells is necessary for memory. Fourth, that memory is abolished if these cells cannot provide output during testing. And fifth, that memory is abolished if these cells cannot receive input during training. With regard to olfactory learning in flies, we argue that the notion of the olfactory memory trace being localized to the Kenyon cells of the mushroom bodies is a reasonable working hypothesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号