首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15396篇
  免费   559篇
  国内免费   384篇
  2023年   110篇
  2022年   241篇
  2021年   253篇
  2020年   276篇
  2019年   471篇
  2018年   489篇
  2017年   221篇
  2016年   302篇
  2015年   434篇
  2014年   846篇
  2013年   1018篇
  2012年   539篇
  2011年   964篇
  2010年   662篇
  2009年   782篇
  2008年   799篇
  2007年   883篇
  2006年   819篇
  2005年   755篇
  2004年   625篇
  2003年   581篇
  2002年   491篇
  2001年   353篇
  2000年   318篇
  1999年   333篇
  1998年   363篇
  1997年   275篇
  1996年   253篇
  1995年   256篇
  1994年   214篇
  1993年   164篇
  1992年   151篇
  1991年   125篇
  1990年   104篇
  1989年   89篇
  1988年   84篇
  1987年   77篇
  1986年   40篇
  1985年   85篇
  1984年   119篇
  1983年   87篇
  1982年   76篇
  1981年   49篇
  1980年   41篇
  1979年   33篇
  1978年   19篇
  1977年   15篇
  1976年   11篇
  1975年   9篇
  1974年   13篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
71.
The insulin receptor (IR) tyrosine kinase is essential for the regulation of different cellular functions by insulin. This may occur by a direct phosphorylation of membrane and/or cytoplasmic proteins by the IR tyrosine kinase. Hence it is important to identify putative physiological substrates for the IR tyrosine kinase. In this study we found that the glycoprotein fraction from rat liver membranes contain a 43 kDa protein (pp43) which, like the -subunit of IR, is phosphorylated in an insulin-dependent manner. A 25-fold enhancement of 32P incorporation into pp43 by insulin was found under optimal conditions. Half-maximal phosphorylation of pp43 and the -subunit of IR were attained at 66 nM and 60 nM insulin, respectively. Mn2+ (Ka = 1.0 mM) was much better than Mg2+ (Ka = 6.3 mM) in supporting pp43 phosphorylation. Insulin-stimulated phosphorylation of pp43 (t1/2 = 3.6 min) proceeded at a much slower rate compared to that of the -subunit of IR (t1/2 = 1.2 min). Phosphoamino acid analysis of pp43 revealed that both tyrosine and serine are phosphorylated in the ratio 4 : 1. Tyrosine, but not serine, phosphorylation was increased 12-fold by insulin. Phosphorylation of pp43 occurred on 4 major tryptic peptides. Comparison to the tryptic phosphopeptides from IR -subunit suggest that pp43 was not derived from IR -subunit by proteolysis. Our results suggest that pp43 may be an endogenous substrate for the IR tyrosine kinase.  相似文献   
72.
DEAE-cellulose column chromatography of Neurospora crassa soluble mycelial extracts leads to the resolution of three major protein kinase activity peaks designated PKI, PKII, and PKIII.PKII activity is stimulated by Ca2+ and Neurospora or brain calmodulin. Maximal stimulation was observed at 2 µM-free Ca2+ and 1 µg/ml of the modulator. The stimulatory effect of the Ca2+-calmodulin complex was blocked by EGTA and by some calmodulin antagonists such as phenothiazine drugs or compound 48/80.PKII phosphorylates different proteins, among which histone II-A at a low concentration and CDPKS, the synthetic peptide specific for Ca2+-calmodulin dependent protein kinases, are the best substrates. Some phosphorylation can be detected in the absence of any exogenous acceptor. PKII activity assayed in the presence of histone II-A or in the absence of exogenous phosphate acceptor (autophosphorylation) co-elute in a DEAE-cellulose column at 0.28 M NaCl. As result of the autophosphorylation reaction of the purified enzyme a main phosphorylated component of 70 kDa was resolved by SDS-polyacrylamide gel electrophoresis. It is possible that this component is an active part of this enzyme.  相似文献   
73.
The involvement of protein phosphorylation in isoproterenol (ISO)-mediated proliferation in the rat parotid gland was investigated by labeling the cells with [32P] orthophosphate. An increased (4–6 fold) incorporation of the radiolabel was noted in the total parotid gland homogenates of ISO-treated animals when compared to controls. Plasma membrane, nuclear membrane and cytoplasm were isolated, the proteins separated by SDS/PAGE and the phosphoproteins detected by autoradiography. Two phosphoproteins with apparent Mr of 45 and 170 kDa were identified in the cytoplasm while the 170 kDa phosphoprotein also appeared as part of plasma membrane. Transfer of these proteins to nitrocellulose followed by Western blot detection with an antiphosphotyrosine monoclonal antibody showed reactivity with the 170 kDa region of the plasma membrane and cytoplasm. Separate in vitro studies involving incubations of rat parotid slices with 0.2 mM ISO and [3H] myo-inositol for 1 min induced inositol phosphate hydrolysis resulting in a significant increase in inositol-bis and -tris phosphate production. Inositol phosphate production can be blocked by pre-incubation with a mixed -adrenergic receptor antagonist but not with physiological concentrations of - or 1-specific adrenergic receptor antagonists, indicating the ISO effects are mediated through the 2-adrenergic receptors. The inclusion of calmodulin antagonists along with ISO prevented the expression of cell-surface galactosyltransferase and retarded gland hypertrophy and hyperplasia. These results suggest that ISO treatment leads to the phosphorylation of target proteins which may be involved in signal transduction pathways leading to cell proliferation.Abbreviations InsP1, InsP2, InSP3 inositol mono-, bis-, and tris-phosphates - UDP Uridine diphosphate - PMSF phenylmethylsulfonylfluoride - SDS sodium dodecyl sulfate - TFP Trifluoperazine - P-tyr phosphotyrosine - Gal Tase galactosyltransferase  相似文献   
74.
The thermodynamic treatment of the disproportionation reaction of adenosine 5′-diphosphate to adenosine 5′-triphosphate and adenosine 5′-monophosphate is discussed in terms of an equilibrium model which includes the effects of the multiplicity of ionic and metal bound species and the presence of long range electrostatic and short range repulsive interactions. Calculated quantities include equilibrium constants, enthalpies, heat capacities, entropies, and the stoichiometry of the overall reaction. The matter of how these calculations can be made self-consistent with respect to both calculated values of the ionic strength and the molality of the free magnesium ion is discussed. The thermodynamic data involving proton and magnesium-ion binding data for the nucleotides involved in this reaction have been evaluated.  相似文献   
75.
A protein kinase, type NII, has been purified from wheat germ chromatin. The enzyme, which uses both ATP and GTP as phosphoryl donors, catalyzes the phosphorylation of casein, phosvitin and E. coli RNA polymerase, but not of histone proteins. Polypeptide bands at 46 kDa, 37 kDa and 25 kDa were estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Autophosphorylation of the 25 kDa subunit was observed following incubation of the purified kinase with (-32P)ATP and (-32P)GTP.  相似文献   
76.
More than 50% of glutamate decarboxylase (GAD) in brain is present as apoenzyme. Recent work has opened the possibility that apoGAD can be studied in brain by labeling with radioactive cofactor. Such studies would be aided by a compound that inhibits specific binding. One possibility is 4-deoxy-pyridoxine 5-phosphate, a close structural analog of the cofactor pyridoxal 5-phosphate. The effects of deoxypyridoxine-P on the cyclic series of reactions that interconverts apo- and holoGAD was investigated and found to be consistent with simple competitive inhibition of the activation of apoGAD by pyridoxal-P. As expected from the cycle GAD was inactivated when incubated with glutamate and deoxypyridoxine-P even though cofactor was present, but no inactivation was observed with deoxypyridoxine-P in the absence of glutamate. Deoxypyridoxine-P also stabilized apoGAD against heat denaturation. These effects were quantitatively accounted for by a kinetic model of the apo-holoGAD cycle. Deoxypyridoxine-P inhibited the labeling by [32P]pyridoxal-P of GAD isolated from rat brain. Hippocampal extracts were labeled with [32P]pyridoxal-P and analyzed by SDS-polyacrylamide gel electrophoresis. Remarkably few bands were strongly labeled. The major labeled band (at 63 kDa) corresponded to one of the forms of GAD. Other strongly-labeled bands were observed at 65 kDa (corresponding to the higher molecular weight form of GAD) and at 69–72 kDa. Labeling of the 63- and 65-kDa bands was inhibited by deoxypyridoxine-P, but the 69–72 kDa bands were unaffected, suggesting that the latter were non-specifically labeled. The results suggest that the 63-kDa form of GAD makes up the majority of apoGAD in hippocampus.Special issue dedicated to Dr. Eugene Roberts.  相似文献   
77.
The recent identification of two genes encoding distinct forms of the GABA synthetic enzyme, glutamate decarboxylase (GAD), raises the possibility that varying expression of the two genes may contribute to the regulation of GABA production in individual neurons. We investigated the postnatal development the two forms of GAD in the rat cerebellum. The mRNA for GAD67, the form which is less dependent on the presence of the cofactor, pyridoxal phosphate (PLP), is present at birth in presumptive Purkinje cells and increases during postnatal development. GAD67 mRNA predominates in the cerebellum. The mRNA for GAD65, which displays marked PLP-dependence for enzyme activity, cannot be detected in cerebellar cortex by in situ hybridization until P7 in Purkinje cells, and later in other GABA neurons. In deep cerebellar nuclei, which mature prenatally, both forms of GAD mRNA can be detected at birth. The amounts of immunoreactice GAD and GAD enzyme activity parallel changes in mRNA levels. We suggest that the delayed appearance of GAD65 is coincident with synapse formation between GABA neurons and their targets during the second postnatal week. GAD67 mRNA may be present prior to synaptogenesis to produce GABA for trophic and metabolic functions.Special issue dedicated to Dr. Eugene Roberts.  相似文献   
78.
In mammalian systems, Ca2+/diacylglycerol-activated phospholipid-dependent protein kinase (C-kinase) appears to play an important role in regulating physiological responses that outlast the transient rise in cytosolic Ca2+. Electrophysiological experiments in neurons of the nudibranch mollusc, Hermissenda crassicornis, have suggested a role for C-kinase in the long-lasting reductions in early and late K+ currents that have been observed following associative learning. Accordingly, we have investigated the catalytic properties of C-kinase in Hermissenda CNS. Following homogenization in Ca2+-free buffer, C-kinase can be separated from Ca2+/calmodulin-dependent protein kinase by centrifugation; C-kinase activity is found in the supernatant whereas essentially all of the Ca2+/calmodulin-dependent protein kinase is found in the membrane fraction. Addition of Ca2+, phosphatidylserine, and diacylglycerol to the cytosol results in phosphorylation of at least eight endogenous proteins. The Hermissenda CNS C-kinase can also phosphorylate lysine-rich histone, a substrate for mammalian C-kinase. The molluscan enzyme exhibits phospholipid specificity in that phosphatidylserine is much more effective than phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, and phosphatidic acid. Addition of diacylglycerol, in the presence of Ca2+ and phosphatidylserine, increases the activity of the C-kinase. The percentage of activation by diacylglycerol is larger at lower Ca2+ concentrations. Enzyme activity is inhibited by trifluoperazine and polymixin B sulfate. These studies indicate that the Hermissenda C-kinase is catalytically similar to mammalian C-kinase.  相似文献   
79.
Soluble extracts from nerve growth factor (NGF)-stimulated PC12 cells prepared by alkaline lysis show a two- to 10-fold greater ability to phosphorylate the 40S ribosomal protein S6 than do extracts from control cells. The alkaline lysis method yields a preparation of much higher specific activity than does sonication. Half-maximal incorporation of 32P from [32P]ATP into S6 occurred after 4-7 min of NGF treatment. The partially purified NGF-sensitive S6 kinase has a molecular weight of 45,000. It is not inhibited by NaCl, chlorpromazine, or the specific inhibitor of cyclic AMP (cAMP)-dependent protein kinase, nor is it activated by addition of diolein plus phosphatidylserine. Trypsin treatment of either crude extracts or partially purified S6 kinase from control or NGF-treated cells was without effect. These data suggest that the S6 kinase stimulated by NGF is neither cAMP-dependent protein kinase or protein kinase C nor the result of tryptic activation of an inactive proenzyme. Treatment of intact cells with dibutyryl cAMP or 5'-N-ethylcarboxamideadenosine also increases the subsequent cell-free phosphorylation of S6. This observation suggests that cAMP-dependent protein kinase may be involved in the phosphorylation of S6 kinase.  相似文献   
80.
Release of Endogenous Amino Acids from Striatal Neurons in Primary Culture   总被引:7,自引:7,他引:0  
Following partial purification, the characteristics of a cytosol protein kinase were investigated. The protein kinase was purified by ammonium sulfate precipitation and diethylaminoethyl-cellulose, ATP-agarose, and hydroxyapatite chromatography. Analysis of the purified protein kinase preparation by polyacrylamide gel electrophoresis revealed three major protein bands. The cytosol protein kinase was purified approximately 442-fold, as calculated from the cyclic nucleotide independent protein kinase activity in the 40,000 g supernatant. The activity of the kinase was found to be independent of either cyclic AMP or cyclic GMP. Moreover, the kinase activity was unaffected by the addition of the endogenous protein kinase inhibitor, or the regulatory subunit from the type II cyclic AMP-dependent protein kinase from bovine heart. The molecular weight of the enzyme was determined to be 95,000 by Sephadex G-200 gel filtration. The activity of the kinase was increased approximately twofold in the presence of 10 microM Ca+2 and calmodulin. This increase was reversed by the addition of EGTA. The subcellular distribution of the protein kinase was also examined. The soluble fraction from nerve terminal was found to have the highest concentration of the kinase activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号