首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   903篇
  免费   42篇
  国内免费   22篇
  2023年   7篇
  2022年   8篇
  2021年   9篇
  2020年   8篇
  2019年   18篇
  2018年   27篇
  2017年   14篇
  2016年   5篇
  2015年   21篇
  2014年   53篇
  2013年   70篇
  2012年   30篇
  2011年   40篇
  2010年   43篇
  2009年   59篇
  2008年   57篇
  2007年   54篇
  2006年   50篇
  2005年   42篇
  2004年   31篇
  2003年   34篇
  2002年   29篇
  2001年   9篇
  2000年   13篇
  1999年   10篇
  1998年   18篇
  1997年   13篇
  1996年   7篇
  1995年   10篇
  1994年   8篇
  1993年   8篇
  1992年   4篇
  1991年   7篇
  1990年   2篇
  1988年   2篇
  1987年   2篇
  1985年   6篇
  1984年   14篇
  1983年   13篇
  1982年   17篇
  1981年   16篇
  1980年   10篇
  1979年   14篇
  1978年   13篇
  1977年   9篇
  1976年   9篇
  1975年   9篇
  1974年   9篇
  1973年   4篇
  1972年   1篇
排序方式: 共有967条查询结果,搜索用时 46 毫秒
1.
S Soulier  P Gaye 《Biochimie》1981,63(7):619-628
The results of subcellular fractionation of sheep mammary gland membranes indicate that N-acetylgalactosaminyl polypeptide transferase and galactosyl-N-acetylgalactosaminyl transferase, which are involved in the assembly of disaccharide units of kappa-casein, are localized chiefly in Golgi membranes. The glycosyltransferase activities incorporating N-acetyl [1-14C] galactosamine and [U-14C] galactose from uridine diphosphate N-acetyl [1-14C] galactosamine and uridine diphosphate [U-14C] galactose, respectively, were measured after membrane solubilization with Triton X-100 either with unglycosylated caseinomacropeptide, or with this polypeptide containing the N-acetylgalactosamine side chain residues (desialylated and degalactosylated caseinomacropeptide). Radioactive N-acetylgalactosamine was incorporated in the unglycosylated acceptor peptide, and the glycosidic bonds in the product were alkali labile, suggesting that they were linked to the hydroxyamino acid residues. In addition radioactive N-acetylgalactosamine was released after alpha N-acetyl-D-galactosaminidase treatment of labelled caseinomacropeptide. [U-14C] galactose was incorporated in the desialylated and degalactosylated acceptor peptide. Reductive alkaline treatment of [U-14C] galactose peptide resulted in the release of a major product, the chromatographic properties of which in TLC were identical with authentic galactosyl (1 leads to 3) N-acetylgalactosaminitol. The structure of the labelled disacchariditol determined after periodate oxidation (two equivalents) by gas liquid chromatography-mass spectrometry revealed that the [U-14C] galactose was linked to position C-3 on the N-acetylgalactosaminyl-residue. The anomery of the galactose, as determined by a chemical method, indicates unambiguously a beta configuration.  相似文献   
2.
A number of proteases have been immobilized on alumina in a two-step procedure: the first step converted them into semisynthetic phosphoproteins which, in the second step, spontaneously bonded to alumina through their phosphate function. The immobilized enzymes thus obtained showed the physical properties typical of the inorganic carrier and a high activity on low molecular weight substrates.  相似文献   
3.
More than 50% of glutamate decarboxylase (GAD) in brain is present as apoenzyme. Recent work has opened the possibility that apoGAD can be studied in brain by labeling with radioactive cofactor. Such studies would be aided by a compound that inhibits specific binding. One possibility is 4-deoxy-pyridoxine 5-phosphate, a close structural analog of the cofactor pyridoxal 5-phosphate. The effects of deoxypyridoxine-P on the cyclic series of reactions that interconverts apo- and holoGAD was investigated and found to be consistent with simple competitive inhibition of the activation of apoGAD by pyridoxal-P. As expected from the cycle GAD was inactivated when incubated with glutamate and deoxypyridoxine-P even though cofactor was present, but no inactivation was observed with deoxypyridoxine-P in the absence of glutamate. Deoxypyridoxine-P also stabilized apoGAD against heat denaturation. These effects were quantitatively accounted for by a kinetic model of the apo-holoGAD cycle. Deoxypyridoxine-P inhibited the labeling by [32P]pyridoxal-P of GAD isolated from rat brain. Hippocampal extracts were labeled with [32P]pyridoxal-P and analyzed by SDS-polyacrylamide gel electrophoresis. Remarkably few bands were strongly labeled. The major labeled band (at 63 kDa) corresponded to one of the forms of GAD. Other strongly-labeled bands were observed at 65 kDa (corresponding to the higher molecular weight form of GAD) and at 69–72 kDa. Labeling of the 63- and 65-kDa bands was inhibited by deoxypyridoxine-P, but the 69–72 kDa bands were unaffected, suggesting that the latter were non-specifically labeled. The results suggest that the 63-kDa form of GAD makes up the majority of apoGAD in hippocampus.Special issue dedicated to Dr. Eugene Roberts.  相似文献   
4.
The recent identification of two genes encoding distinct forms of the GABA synthetic enzyme, glutamate decarboxylase (GAD), raises the possibility that varying expression of the two genes may contribute to the regulation of GABA production in individual neurons. We investigated the postnatal development the two forms of GAD in the rat cerebellum. The mRNA for GAD67, the form which is less dependent on the presence of the cofactor, pyridoxal phosphate (PLP), is present at birth in presumptive Purkinje cells and increases during postnatal development. GAD67 mRNA predominates in the cerebellum. The mRNA for GAD65, which displays marked PLP-dependence for enzyme activity, cannot be detected in cerebellar cortex by in situ hybridization until P7 in Purkinje cells, and later in other GABA neurons. In deep cerebellar nuclei, which mature prenatally, both forms of GAD mRNA can be detected at birth. The amounts of immunoreactice GAD and GAD enzyme activity parallel changes in mRNA levels. We suggest that the delayed appearance of GAD65 is coincident with synapse formation between GABA neurons and their targets during the second postnatal week. GAD67 mRNA may be present prior to synaptogenesis to produce GABA for trophic and metabolic functions.Special issue dedicated to Dr. Eugene Roberts.  相似文献   
5.
The incorporation of [14C]mevalonate and [14C]isopentenyl diphosphate into geranylgeranyl diphosphate was investigated in in vitro systems from Cucurbita pepo (pumpkin) endosperm and from Avena sativa etioplasts. Mevalonate incorporation was effectively inhibited in the pumpkin system by geranylgeranyl diphosphate and geranylgeranyl monophosphate but less effectively by phytyl diphosphate or inorganic diphosphate. Membrane lipids, geranyllinalool, or lecithin enhanced mevalonate incorporation in the Cucurbita system. Incorporation of isopentenyl diphosphate was also enhanced by lecithin and inhibited by geranylgeranyl diphosphate in the Cucurbita system. No lipid enhancement was found in the Avena system; inhibition by GGPP required a much higher GGPP concentration than in the Cucurbita system.  相似文献   
6.
Changes during growth in the activity of several enzymes involved in purine "salvage", adenine phosphoribosyltransferase (EC 2.4.2.7), guanine phosphoribosyl-transferase (EC 2.4.2.8), hypoxanthine phosphoribosyltransferase (EC 2.4.2.8) and adenosine kinase (EC 2.7.1.20), the enzymes which catalyze the conversion of nucleoside monophosphate to triphosphate, nucleoside monophosphate kinase (EC 2.7.4.4) and nucleoside diphosphate kinase (EC 2.7.4.6), and several degradation enzymes, deoxyribonucleae(s), ribonuclease(s). phosphatase(s), nucleosidase (EC 3.2.2.1), 3'-nucleotidase (EC 3.1.3.6) and 5'-nucleotidase (EC 3.1.3.5) were examined in cells of Catharanthus roseus (L.) G. Don cultured in suspension. In addition, the incorporation of [8-14C] adenine, [8-14C] adenine, [8-14C]hypoxanthine. [8-14C] adenosine and [8-14C]inosine into nucleotides and nucleic acids was also determined using intact cells.
The activities of all purine "salvage" enzymes examined and those of nucleoside monophosphate and diphosphate kinases increased rapidly during the lag phase and decreased during the following cell division and cell expansion phases. The rate of incorporation of adenine, guanine, hypoxanthine, and adenosine into nucleotides and nucleic acids was higher in the lag phase cells than during the following three phases. The highest rate of [8-14C]inosine incorporation was observed in the stationary phase cells. The activity of all degradation enzymes examined decreased when the stationary phase cells were transferred to a new medium.
These results indicated that the increased activity of purine "salvage" enzymes observed in the lag phase cells may contribute to an active purine "salvage" which is required to initiate a subsequent cell division.  相似文献   
7.
The levels of adenylate nucleotides were examined in 4th-instar Trichoplusia ni larvae 3 days after parasitization by the insect parasite Hyposoter exiguae. In general, parasitization caused a decrease in the level of ATP and increased ADP and AMP levels. These changes resulted in alteration of the adenylate kinase mass-action ratio. The overall energy status of parasitized larvae, however, as indicated by energy ratios, including the “energy charge,” was affected only slightly. The result demonstrates that the host maintained an active and viable metabolic state despite extensive alterations in physiology which occur at this stage of the parasite-host association.  相似文献   
8.
Antimutagenic effects of cinnamaldehyde on mutagenesis by chemical agents were investigated in Escherichia coli WP2 uvrA- trpE-. Cinnamaldehyde, when added to agar medium, greatly reduced the number of Trp+ revertants induced by 4-nitroquinoline 1-oxide (4-NQO) without any decrease of cell viability. This antimutagenic effect could not be explained by inactivation of 4-NQO caused by direct interaction with cinnamaldehyde. Mutagenesis by furylfuramide (AF-2) was also suppressed significantly. Mutations induced by methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS) were slightly inhibited. However, cinnamaldehyde was not at all effective on the mutagenesis of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Two derivatives of cinnamaldehyde, cinnamyl alcohol and trans-cinnamic acid, did not have as strong antimutagenic effects on 4-NQO mutagenesis as cinnamaldehyde had. Because cinnamaldehyde showed marked antimutagenic effects against mutations induced by UV-mimic mutagens but not those induced by MNNG or EMS, it seems that cinnamaldehyde might act by interfering with an inducible error-prone DNA repair pathway.  相似文献   
9.
10.
Heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins) serve to transduce information from agonist-bound receptors to effector enzymes or ion channels. Current models of G protein activation-deactivation indicate that the oligomeric GDP-bound form must undergo release of GDP, bind GTP and undergo subunit dissociation, in order to be in active form (GTP bound subunits and free dimers) and to regulate effectors. The effect of receptor occupation by an agonist is generally accepted to be promotion of guanine nucleotide exchange thus allowing activation of the G protein. Recent studies indicate that transphosphorylation leading to the formation of GTP from GDP and ATP in the close vicinity, or even at the G protein, catalysed by membrane-associated nucleoside diphosphate kinase, may further activate G proteins. This activation is demonstrated by a decreased affinity of G protein-coupled receptors for agonists and an increased response of G protein coupled effectors. In addition, a phosphorylation of G protein subunits and consequent phosphate transfer reaction resulting in G protein activation has also been demonstrated. Finally, endogenously formed GTP was preferentially effective in activating some G proteins compared to exogenous GTR The aim of this report is to present an overview of the evidence to date for a transphosphorylation as a means of G protein activation (see also refs [1 and 2] for reviews). (Mol Cell Biochem 157: 593, 1996)Recipient of Servier Investigator Award  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号