首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   605篇
  免费   10篇
  国内免费   12篇
  2023年   4篇
  2022年   8篇
  2021年   9篇
  2020年   9篇
  2019年   12篇
  2018年   21篇
  2017年   12篇
  2016年   20篇
  2015年   16篇
  2014年   24篇
  2013年   145篇
  2012年   12篇
  2011年   21篇
  2010年   17篇
  2009年   21篇
  2008年   20篇
  2007年   19篇
  2006年   14篇
  2005年   17篇
  2004年   20篇
  2003年   11篇
  2002年   10篇
  2001年   12篇
  2000年   11篇
  1999年   10篇
  1998年   7篇
  1997年   8篇
  1996年   6篇
  1995年   7篇
  1994年   10篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1990年   4篇
  1989年   6篇
  1988年   5篇
  1986年   2篇
  1985年   10篇
  1984年   7篇
  1983年   4篇
  1982年   12篇
  1981年   2篇
  1980年   6篇
  1979年   6篇
  1978年   3篇
  1977年   4篇
  1976年   5篇
  1974年   1篇
  1973年   4篇
  1967年   1篇
排序方式: 共有627条查询结果,搜索用时 359 毫秒
41.
The pyrimidine nucleoside, 1-β-D-ribofuranosyl pyridine-2-one-5-carboxamide, is an anti inflammatory agent used in the treatment of adjuvant-induced arthritis. It is the 2-one isomer of 1-β-D-ribofuranosyl pyridine-4-one 5-carboxamide, an unusual nucleoside isolated from the urine of patients with chronic myelogenic leukemia and an important cancer marker. Crystals of 1-β-D-ribofuranosyl pyridine-2-one-5-carboxamide are monoclinic, space group C2, with the cell dimensions a = 31.7920(13), b = 4.6872 (3), c = 16.1838(11), β = 93.071(3)°, V = 2408.2(2) Å3, Dcalc = 1.496 mg/m3 and Z = 8 (two molecules in the asymmetric unit). The structure was obtained by the application of direct methods to diffractometric data and refined to a final R value of 0.050 for 1669 reflections with I ≥ 3σ. The nucleoside exhibits an anti conformation across the glycosidic bond (χCN = ?15.5°, ?18.9°), a C3 ′- endo C2 ′ -exo [3 2T] ribose pucker and g+ across the C(4 ′)-C(5 ′) exocyclic bond. The amino group of the carboxamide group is distal from the 2-one and lacks the intramolecular hydrogen bonding found in the related 2-one molecule. Nuclear magnetic resonance studies shows also an anti conformation across the glycosidic bond but the solution conformation of the furanose ring is not the same as that found in the solid state.  相似文献   
42.
Spatial organization of metabolic enzymes may represent a general cellular mechanism to regulate metabolic flux. One recent example of this type of cellular phenomenon is the purinosome, a newly discovered multi-enzyme metabolic assembly that includes all of the enzymes within the de novo purine biosynthetic pathway. Our understanding of the components and regulation of purinosomes has significantly grown in recent years. This paper reviews the purine de novo biosynthesis pathway and its regulation, and presents the evidence supporting the purinosome assembly and disassembly processes under the control of G-protein-coupled receptor (GPCR) signaling. This paper also discusses the implications of purinosome and GPCR regulation in drug discovery.  相似文献   
43.
Two important steps of the de novo purine biosynthesis pathway are catalyzed by the 5‐aminoimidazole ribonucleotide carboxylase and the 4‐(N‐succinylcarboxamide)‐5‐aminoimidazole ribonucleotide synthetase enzymes. In most eukaryotic organisms, these two activities are present in the bifunctional enzyme complex known as PAICS. We have determined the 2.8‐Å resolution crystal structure of the 350‐kDa invertebrate PAICS from insect cells (Trichoplusia ni) using single‐wavelength anomalous dispersion methods. Comparison of insect PAICS to human and prokaryotic homologs provides insights into substrate binding and reveals a highly conserved enzymatic framework across divergent species. Proteins 2013; 81:1473–1478. © 2013 Wiley Periodicals, Inc.  相似文献   
44.
The ppGpp-signaling system functions in plant chloroplasts. In bacteria, a negative effect of ppGpp on adenylosuccinate synthetase (AdSS) has been suggested. Our biochemical analysis also revealed rice AdSS homologs are apparently sensitive to ppGpp. However, further investigation clarified that this phenomenon is cancelled by the high substrate affinity to the enzymes, leading to a limited effect of ppGpp on adenylosuccinate synthesis.  相似文献   
45.
ABSTRACT

Malignant pleural mesothelioma (MPM) is a very hypoxic malignancy, and hypoxia has been associated with resistance towards gemcitabine. The muscle-isoform of lactate dehydrogenase (LDH-A) constitutes a major checkpoint for the switch to anaerobic glycolysis. Therefore we investigated the combination of a new LDH-A inhibitor (NHI-1) with gemcitabine in MPM cell lines. Under hypoxia (O2 tension of 1%) the cell growth inhibitory effects of gemcitabine, were reduced, as demonstrated by a 5- to 10-fold increase in IC50s. However, the simultaneous addition of NHI-1 was synergistic (combination index < 1). Flow cytometry demonstrated that hypoxia caused a G1 arrest, whereas the combination of NHI-1 significantly increased gemcitabine-induced cell death. Finally, the mRNA expression levels of the human equilibrative transporter-1 (hENT1) were significantly down-regulated under hypoxia, but treatment with NHI-1 was associated with a recovery of hENT1 expression. In conclusion, our data show that hypoxia increased MPM resistance to gemcitabine. However, cell death induction and modulation of the key transporter in gemcitabine uptake may contribute to the synergistic interaction of gemcitabine with the LDH-A inhibitor NHI-1 and support further studies for the rational development of this combination.  相似文献   
46.
The present study includes the exploration of new possible nucleoside mimetics based on 4-methoxy-7H-pyrrolo[2,3-d]pyrimidine carbocyclic nucleosides (4a–g), which were synthesized by 10–15 synthetic steps and characterized adequately. We report the anti-HCV activities and cytotoxicities of 4a–g. Compound 4a was analyzed by single crystal X-ray diffraction which showed some puckering in the cyclopentene ring with a 2′-endo conformation and anti-base disposition (χ = ?125.7°).  相似文献   
47.
ABSTRACT

Carefully balanced deoxynucleoside triphosphate (dNTP) pools are essential for both nuclear and mitochondrial genome replication and repair. Two synthetic pathways operate in cells to produce dNTPs, e.g., the de novo and the salvage pathways. The key regulatory enzymes for de novo synthesis are ribonucleotide reductase (RNR) and thymidylate synthase (TS), and this process is considered to be cytosolic. The salvage pathway operates both in the cytosol (TK1 and dCK) and the mitochondria (TK2 and dGK). Mitochondrial dNTP pools are separated from the cytosolic ones owing to the double membrane structure of the mitochondria, and are formed by the salvage enzymes TK2 and dGK together with NMPKs and NDPK in postmitotic tissues, while in proliferating cells the mitochondrial dNTPs are mainly imported from the cytosol produced by the cytosolic pathways. Imbalanced mitochondrial dNTP pools lead to mtDNA depletion and/or deletions resulting in serious mitochondrial diseases. The mtDNA depletion syndrome is caused by deficiencies not only in enzymes in dNTP synthesis (TK2, dGK, p53R2, and TP) and mtDNA replication (mtDNA polymerase and twinkle helicase), but also in enzymes in other metabolic pathways such as SUCLA2 and SUCLG1, ABAT and MPV17. Basic questions are why defects in these enzymes affect dNTP synthesis and how important is mitochondrial nucleotide synthesis in the whole cell/organism perspective? This review will focus on recent studies on purine and pyrimidine metabolism, which have revealed several important links that connect mitochondrial nucleotide metabolism with amino acids, glucose, and fatty acid metabolism.  相似文献   
48.
A series of novel trisubstituted 1,2,3-triazole purine nucleosides were efficiently synthesized via Huisgen 1,3-dipolar cycloaddition in good yields. Bioactivity against cytomegalovirus (CMV) and varicella-zoster virus (VZV) in human embryonic lung cell cultures was evaluated and all compounds show low antiviral activity.  相似文献   
49.
In the search for double-coding DNA-systems, three new pyrimidine nucleosides, each coded with an additional nucleobase anchored to the major groove face, are synthesized. Two of these building blocks carry a thymine at the 5-position of 2′-deoxyuridine through a methylene linker and a triazolomethylene linker, respectively. The third building block carries an adenine at the 6-position of pyrrolo-2′-deoxycytidine through a methylene linker. These double-headed nucleosides are introduced into oligonucleotides and their effects on the thermal stabilities of duplexes are studied. All studied double-headed nucleotide monomers reduce the thermal stability of the modified duplexes, which is partially compensated by using consecutive incorporations of the modified monomers or by flanking the new double-headed analogs with members of our former series containing propyne linkers. Also their potential in triplex-forming oligonucleotides is studied for two of the new double-headed nucleotides as well as the series of analogs with propyne linkers. The most stable triplexes are obtained with single incorporations of additional pyrimidine nucleobases connected via the propyne linker.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号