首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7158篇
  免费   468篇
  国内免费   234篇
  7860篇
  2025年   19篇
  2024年   119篇
  2023年   113篇
  2022年   104篇
  2021年   159篇
  2020年   219篇
  2019年   274篇
  2018年   231篇
  2017年   297篇
  2016年   241篇
  2015年   323篇
  2014年   346篇
  2013年   462篇
  2012年   309篇
  2011年   344篇
  2010年   261篇
  2009年   320篇
  2008年   362篇
  2007年   338篇
  2006年   314篇
  2005年   283篇
  2004年   256篇
  2003年   255篇
  2002年   192篇
  2001年   181篇
  2000年   167篇
  1999年   176篇
  1998年   148篇
  1997年   116篇
  1996年   115篇
  1995年   102篇
  1994年   94篇
  1993年   76篇
  1992年   79篇
  1991年   77篇
  1990年   45篇
  1989年   40篇
  1988年   41篇
  1987年   41篇
  1986年   29篇
  1985年   34篇
  1984年   35篇
  1983年   20篇
  1982年   24篇
  1981年   20篇
  1980年   16篇
  1979年   11篇
  1978年   12篇
  1974年   4篇
  1972年   4篇
排序方式: 共有7860条查询结果,搜索用时 0 毫秒
31.
    
The widespread distribution of the eastern rainbow fish Melanotaenia splendida splendida throughout the isolated headwaters of the rivers on the Atherton Tableland, north-eastern Australia, suggests multiple colonization events from the eastern lowlands via each respective river channel, or a single colonization event on to the tableland with subsequent dispersal between the headwaters. To explore the likely processes that resulted in the current distribution on the tableland, two models of gene flow were tested: (a) the hierarchical gene flow model that tests the hypothesis for contemporary gene flow via stream channels and (b) the stepping stone model that tests for dispersal between streams. Neither of these models explained the observed genetic structure, adequately. However, there is support for extensive historical dispersal across the headwaters of the isolated drainages. If this dispersal followed a single colonization event, the subsequent range expansion could have facilitated a rapid rise in population size due to an increase in suitable habitat. The genetic data indicates an eight-fold increase in population size c. 100 thousand years ago.  相似文献   
32.
    
Many species have Holarctic distributions that extend across Europe, Asia and North America. Most genetics research on these species has examined only mitochondrial (mt) DNA, which has revealed wide variance in divergence between Old World (OW) and New World (NW) populations, ranging from shallow, unstructured genealogies to deeply divergent lineages. In this study, we sequenced 20 nuclear introns to test for concordant patterns of OW–NW differentiation between mtDNA and nuclear (nu) DNA for six lineages of Holarctic ducks (genus Anas). Genetic differentiation for both marker types varied widely among these lineages (idiosyncratic population histories), but mtDNA and nuDNA divergence within lineages was not significantly correlated. Moreover, compared with the association between mtDNA and nuDNA divergence observed among different species, OW–NW nuDNA differentiation was generally lower than mtDNA divergence, at least for lineages with deeply divergent mtDNA. Furthermore, coalescent estimates indicated significantly higher rates of gene flow for nuDNA than mtDNA for four of the six lineages. Thus, Holarctic ducks show prominent mito‐nuclear discord between OW and NW populations, and we reject differences in sorting rates as the sole cause of the within‐species discord. Male‐mediated intercontinental gene flow is likely a leading contributor to this discord, although selection could also cause increased mtDNA divergence relative to weak nuDNA differentiation. The population genetics of these ducks contribute to growing evidence that mtDNA can be an unreliable indicator of stage of speciation and that more holistic approaches are needed for species delimitation.  相似文献   
33.
1. Dissolved organic carbon (DOC) can induce lethal and sub‐lethal effects in exposed biota via hypoxic blackwater events and the toxicity of leached compounds. Little is known of how DOC exposure affects fish reproduction despite the fact that its release can coincide with spawning‐associated flow pulses. 2. River red gum (Eucalyptus camaldulensis) leaf leachate is a major source of DOC in Australian freshwaters and includes the toxic plant secondary metabolites polyphenols and tannins. High concentrations of leachate are released when leaves on floodplains or dry stream channels are inundated by water. 3. Southern pygmy perch (Nannoperca australis) from naturally high and naturally low Eucalyptus leachate environments in south‐east Australia were exposed to elevated leachate levels to investigate the effects of DOC on reproduction and to explore whether response patterns were consistent with populations becoming locally adapted to historical leachate levels. 4. Fish exposed to leachate were half as likely to reach sexual maturity as control fish. Fish from a naturally high‐exposure population tended to reach sexual maturity earlier than those from a naturally low‐exposure population. Leachate exposure had no effect on either egg size or fecundity. 5. Our results suggest that leachate‐exposed mothers did not reproduce because they were physiologically stressed or perceive the environment to be unsuitable, which raises the potential of plastic or adaptive responses to this stressor. The negative sub‐lethal effects observed have important fitness implications for individuals, the viability of populations and the management of environmental flows and riparian zones.  相似文献   
34.
    
In a recent paper, Yukilevich (2012) showed that asymmetries between Drosophila species in the strength of premating isolation tend to match asymmetries in the costs of hybridization (inferred from asymmetries in the strength of postzygotic isolation and range sizes). The results provide novel evidence that the outcome of reinforcement can depend on the strength and frequency of selection against hybridization. Here, I reanalyze the data to demonstrate that another (unconsidered) factor, namely the quantitative degree of sympatry between species, also predictably affects reinforcement. Specifically, premating isolation is strongest at intermediate degrees of sympatry. This result complements, rather than challenges, those of Yukilevich (2012) . One possible explanation for this newly discovered pattern is that when the degree of sympatry is small, selection for avoidance of hybridization is rare, but when the degree of sympatry is large, homogenizing gene flow overcomes reinforcing selection. Thus, reinforcement may depend on the balance between selection and gene flow. However, the current work examined degree of sympatry, not gene flow itself. Thus, further data on gene flow levels in Drosophila is required to test this hypothesis, which emerged from the patterns reported here.  相似文献   
35.
1. We used direct observation and mark‐recapture techniques to quantify movements by mottled sculpins (Cottus bairdi) in a 1 km segment of Shope Fork in western North Carolina. Our objectives were to: (i) quantify the overall rate of sculpin movement, (ii) assess variation in movement among years, individuals, and sculpin size classes, (iii) relate movement to variation in stream flow and population size structure, and (iv) quantify relationships between movement and individual growth rates. 2. Movements were very restricted: median and mean movement distances for all sculpin size classes over a 45 day period were 1.3 and 4.4 m respectively. Nevertheless, there was a high degree of intrapopulation and temporal variation in sculpin movement. Movement of juveniles increased with discharge and with the density of large adults. Movement by small and large adults was not influenced by stream flow, but large adults where more mobile when their own density was high. Finally, there were differences in the growth rates of mobile and sedentary sculpins. Mobile juveniles grew faster than sedentary individuals under conditions of low flow and high density of large adults, whereas adults exhibited the opposite pattern. 3. Our results support the hypothesis that juvenile movement and growth is influenced by both intraspecific interactions with adults and stream flow. In contrast, adult movement appears to be influenced by competitive interactions among residents for suitable space. The relationship between movement and growth may provide a negative feedback mechanism regulating mottled sculpin populations in this system.  相似文献   
36.
1. Gene flow in populations of stream insects is expected to depend on the distance between and the connectedness of sites in stream networks, and on dispersal ability (i.e. larval drift and adult flight).
2. Yoraperla brevis (Banks) is an abundant and characteristic stonefly of smaller streams in the northern Rocky Mountains. The present authors analysed genetic structure at 27 sites in sevenz streams flowing into the Bitterroot River in western Montana, USA. Cellulose acetate electrophoresis identified five variable loci with 16 alleles.
3. Genotype frequencies conformed to Hardy–Weinberg expectations. Within-stream differentiation was low and among-stream variation ( F st) was an order of magnitude higher.
4. UPGMA grouped sites within streams and also grouped adjacent streams. The tree produced by the Neighbour Joining Method was similar although not quite so clear cut.
5. This orderly pattern (i.e. Hardy–Weinberg proportions, homogeneity within streams and geographical structure) contrasts strongly with patterns observed in invertebrates from subtropical streams in Australia. Yoraperla brevis maintains large populations in predictable environments, has a long life-cycle with a likelihood of cohort mixing, emerges synchronously in large breeding populations and occupies streams separated by areas of high relief; the Australian situation is the opposite in most respects.
6. Further analysis of a range of species is required to determine whether the different genetic structure in Y. brevis compared to the Australian species occurs more generally in North American stream insects.  相似文献   
37.
Background: Range expansion often results in colonisation bottlenecks that should both deplete genetic diversity and increase genetic differentiation towards the margins of a species' geographic distribution.

Aims: We tested whether genetic differentiation increased among populations of the annual plant Mercurialis annua after its colonisation of the Iberian Peninsula from Morocco. Previous work showed that this colonisation resulted in a decrease of phenotypic and genetic diversity from the core in North Africa towards the distribution margins of M. annua in north-eastern and north-western Spain.

Methods: Seeds were sampled from 20 populations located across the hexaploid range of M. annua. Patterns of phenotypic and genetic differentiation among experimentally grown populations were analysed and compared between the Iberian Peninsula and North Africa.

Results: The level of phenotypic and genetic differentiation among populations in the expanded range of the Iberian Peninsula was similar to that in the core range in North Africa.

Conclusions: Our findings imply that the observed effects of range expansion on genetic differentiation may be independent of the effects on genetic diversity. They point to the importance of taking both historic and contemporary processes of migration into account when predicting the results of range expansion.  相似文献   
38.
Many prey species, from soil arthropods to fish, perceive the approach of predators, allowing them to escape just in time. Thus, prey capture is as important to predators as prey finding. We extend an existing framework for understanding the conjoint trajectories of predator and prey after encounters, by estimating the ratio of predator attack and prey danger perception distances, and apply it to wolf spiders attacking wood crickets. Disturbances to air flow upstream from running spiders, which are sensed by crickets, were assessed by computational fluid dynamics with the finite-elements method for a much simplified spider model: body size, speed and ground effect were all required to obtain a faithful representation of the aerodynamic signature of the spider, with the legs making only a minor contribution. The relationship between attack speed and the maximal distance at which the cricket can perceive the danger is parabolic; it splits the space defined by these two variables into regions differing in their values for this ratio. For this biological interaction, the ratio is no greater than one, implying immediate perception of the danger, from the onset of attack. Particular attention should be paid to the ecomechanical aspects of interactions with such small ratio, because of the high degree of bidirectional coupling of the behaviour of the two protagonists. This conclusion applies to several other predator–prey systems with sensory ecologies based on flow sensing, in air and water.  相似文献   
39.
(35)S-Methionine and (3)H-leucine bioassay tracer experiments were conducted on two meridional transatlantic cruises to assess whether dominant planktonic microorganisms use visible sunlight to enhance uptake of these organic molecules at ambient concentrations. The two numerically dominant groups of oceanic bacterioplankton were Prochlorococcus cyanobacteria and bacteria with low nucleic acid (LNA) content, comprising 60% SAR11-related cells. The results of flow cytometric sorting of labelled bacterioplankton cells showed that when incubated in the light, Prochlorococcus and LNA bacteria increased their uptake of amino acids on average by 50% and 23%, respectively, compared with those incubated in the dark. Amino acid uptake of Synechococcus cyanobacteria was also enhanced by visible light, but bacteria with high nucleic acid content showed no light stimulation. Additionally, differential uptake of the two amino acids by the Prochlorococcus and LNA cells was observed. The populations of these two types of cells on average completely accounted for the determined 22% light enhancement of amino acid uptake by the total bacterioplankton community, suggesting a plausible way of harnessing light energy for selectively transporting scarce nutrients that could explain the numerical dominance of these groups in situ.  相似文献   
40.
    
Perfusion bioreactors have been used in different tissue engineering applications because of their consistent distribution of nutrients and flow-induced shear stress within the tissue-engineering scaffold. A widely used configuration uses a scaffold with a circular cross-section enclosed within a cylindrical chamber and inlet and outlet pipes which are connected to the chamber on either side through which media is continuously circulated. However, fluid-flow experiments and simulations have shown that the majority of the flow perfuses through the center. This pattern creates stagnant zones in the peripheral regions as well as in those of high flow rate near the inlet and outlet. This non-uniformity of flow and shear stress, owing to a circular design, results in limited cell proliferation and differentiation in these areas. The focus of this communication is to design an optimized perfusion system using computational fluid dynamics as a mathematical tool to overcome the time-consuming trial and error experimental method. We compared the flow within a circular and a rectangular bioreactor system. Flow simulations within the rectangular bioreactor are shown to overcome the limitations in the circular design. This communication challenges the circular cross-section bioreactor configuration paradigm and provides proof of the advantages of the new design over the existing one.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号