首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1041篇
  免费   132篇
  国内免费   17篇
  2024年   6篇
  2023年   46篇
  2022年   56篇
  2021年   89篇
  2020年   55篇
  2019年   61篇
  2018年   74篇
  2017年   49篇
  2016年   50篇
  2015年   45篇
  2014年   82篇
  2013年   109篇
  2012年   40篇
  2011年   52篇
  2010年   32篇
  2009年   32篇
  2008年   42篇
  2007年   46篇
  2006年   25篇
  2005年   32篇
  2004年   38篇
  2003年   17篇
  2002年   19篇
  2001年   6篇
  2000年   8篇
  1999年   11篇
  1998年   8篇
  1997年   7篇
  1996年   5篇
  1995年   6篇
  1994年   4篇
  1993年   7篇
  1992年   5篇
  1991年   3篇
  1990年   4篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   5篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有1190条查询结果,搜索用时 31 毫秒
61.
62.
63.
The COVID-19 pandemic led to the reorganization of health care in several countries, including Brazil. Inborn Errors of Metabolism (IEM) are a group of rare and difficult to diagnose genetic diseases caused by pathogenic variants in genes that code for enzymes, cofactors, or structural proteins affecting different metabolic pathways. The aim of this study was to evaluate how COVID-19 affected the diagnosis of patients with IEM during the first year of the pandemic in Brazil comparing two distinct periods: from March 1st, 2019 to February 29th, 2020 (TIME A) and from March 1st, 2020 to February 28th, 2021 (TIME B), by the analysis of the number of tests and diagnoses performed in a Reference Center in South of Brazil. In the comparison TIME A with TIME B, we observe a reduction in the total number of tests performed (46%) and in the number of diagnoses (34%). In both periods analyzed, mucopolysaccharidoses (all subtypes combined) was the most frequent LD suspected and/or confirmed. Our data indicates a large reduction in the number of tests requested for the investigation of IEM and consequently a large reduction in the number of diagnoses caused by the COVID-19 pandemic leading to a significant underdiagnosis of IEM.  相似文献   
64.
Fibrinogen-like protein 1 (FGL1) is a novel hepatokine that forms part of the fibrinogen superfamily. It is predominantly expressed in the liver under normal physiological conditions. When the liver is injured by external factors, such as chemical drugs and radiation, FGL1 acts as a protective factor to promote the growth of regenerated cells. However, elevated hepatic FGL1 under high fat conditions can cause lipid accumulation and inflammation, which in turn trigger the development of non-alcoholic fatty liver disease, diabetes, and obesity. FGL1 is also involved in the regulation of insulin resistance in adipose tissues and skeletal muscles as a means of communication between the liver and other tissues. In addition, the abnormally changed FGL1 levels in the plasma of cancer patients make it a potential predictor of cancer incidence in clinical practice. FGL1 was recently identified as a major functional ligand of the immune inhibitory receptor, lymphocyte-activation gene 3 (LAG3), thus making it a promising target for cancer immunotherapy except for the classical programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) axis. Despite the potential of FGL1 as a new cancer biomarker and therapeutic target, there are few related studies and much of what has been reported are superficial and lack depth and particularity. Therefore, elucidating the role and underlying mechanisms of FGL1 could be crucial for the development of promising diagnostic and therapeutic strategies for related diseases. Here, we provide a comprehensive review of the cellular mechanisms and clinical prospects of FGL1 in the prevention and treatment of liver diseases, metabolic disorders and cancer, and proffer suggestions for future studies.  相似文献   
65.
Rhizomelic chondrodysplasia punctata (RCDP) is a lethal autosomal recessive disease correspondingto complementation group 11 (CG 11), the second most common of the thirteen CGs of peroxisomalbiogenesis disorders (PBDs). RCDP is characterized by proximal limb shortening, severely disturbedendochondrial bone formation, and mental retardation, but there is an absence of the neuronal migrationdefect found in the other PBDs. Plasmalogen biosynthesis and phytanic acid oxidation are deficient, butvery long chain fatty acid (VLCFA) oxidation is normal. At the cellular level, RCDP is unique in thatthe biogenesis of most peroxisomal proteins is normal, but a specific subset of at least four, and maybemore, peroxisomal matrix proteins fail to be imported from the cytosol. In this review, we discuss recentadvances in understanding RCDP, most prominently the cloning of the affected gene, PEX7,and identification of PEX7 mutations in RCDP patients. Human PEX7 wasidentified by virtue of its sequence similarity to its Saccharomyces cerevisiae ortholog, whichhad previously been shown to encode Pex7p, an import receptor for type 2 peroxisomal targetingsequences (PTS2). Normal human PEX7 expression rescues the cellular defects in culturedRCDP cells, and cDNA sequence analysis has identified a variety of PEX7 mutations in RCDP patients,including a deletion of 100 nucleotides, probably due to a splice site mutation, and a prevalent nonsensemutation which results in loss of the carboxyterminal 32 amino acids. Identification of RCDP as a PTS2import disorder explains the observation that several, but not all, peroxisomal matrix proteins aremistargeted in this disease; three of the four proteins deficient in RCDP have now been shown to bePTS2-targeted.  相似文献   
66.
Dasgupta S  Li D  Yu RK 《Neurochemical research》2004,29(11):2147-2152
Two very high titer polyclonal antibodies against two ganglioside antigens, GM1 and GD1a, have been raised in New Zealand white rabbits using a homogeneous suspension of the highly purified antigens in Keyhole Limpet Hemocyanin and Freunds adjuvant. The antisera were prepared over a period of 6 months with repeated injections of the ganglioside suspension, followed by an intravenous injection of the purified ganglioside solution, and collecting the serum (approximately 50 ml) at defined time intervals. The GM1-antibody, thus prepared, showed a cross reactivity toward GD1b and asialo-GM1 (GA1), while the GD1a-antibody reacted with GD1a, GM1 and GA1 and GD1b as determined by immuno-overlay and ELISA methods. The titer for GM1 antiserum, determined by ELISA, was greater than 1/10,000 dilution while the titer for GD1a antibody was greater than 1/5,000 dilution. No neurological or behavioral abnormality was observed during the period of antiserum production. To evaluate any likely pathological damage caused by such a high titer ganglioside-antibody, autopsy of CNS as well PNS tissues from the rabbits were carried out after the final bleeding. No obvious pathological changes, including demyelination, were noted in any of the four rabbits. These observations cast doubt as to the direct effect of anti-ganglioside antibody induced neurological and pathological disorders.Special issue dedicated to Lawrence F. Eng.  相似文献   
67.
Clinical depression and other mood disorders are relatively common mental illnesses but therapy for a substantial number of patients is unsatisfactory. For many years clinicians and neuroscientists believed that the evidence pointed toward alterations in brain monoamine function as the underlying cause of depression. This point of view is still valid. Indeed, much of current drug therapy appears to be targeted at central monoamine function. Other results, though, indicate that GABAergic mechanisms also might play a role in depression. Such indications stem from both direct and indirect evidence. Direct evidence has been gathered in the clinic from brain scans or postmortem brain samples, and cerebrospinal fluid (CSF) and serum analysis in depressed patients. Indirect evidence comes from interaction of antidepressant drugs with GABAergic system as assessed by in vivo and in vitro studies in animals. Most of the data from direct and indirect studies are consistent with GABA involvement in depression.  相似文献   
68.
Congenital disorders of glycosylation (CDG) are a group of multisystemic disorders resulting from defects in the synthesis and processing of N-linked oligosaccharides. The most common form, CDG type Ia (CDG-Ia), results from a deficiency of the enzyme phosphomannomutase (PMM). PMM converts mannose 6-phosphate (man-6-P) to mannose-1-phosphate (man-1-P), which is required for the synthesis of GDP-mannose, a substrate for dolichol-linked oligosaccharide synthesis. The traditional assay for PMM, a coupled enzyme system based on the reduction of NADP(+) to NADPH using man-1-P as a substrate, has limitations in accuracy and reproducibility. Therefore, a more sensitive, direct test for PMM activity, based on the detection of the conversion of man-1-P to man-6-P by high-pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), was developed. Using this assay, the activity of PMM was markedly deficient in fibroblasts and lymphoblasts from 23 patients with CDG-Ia (range 0-15.3% of control, average 4.9+/-4.7%) and also decreased in seven obligate heterozygotes (range 33.0-72.0% of control, average 52.2+/-14.7%). Unlike the spectrophotometric method, there was no overlap in PMM activity among patients, obligate heterozygotes, or controls. Thus, the PMM assay based on HPAEC-PAD has increased utility in the clinical setting, and can be used, together with transferrin isoelectric focusing, to diagnose patients with CDG-Ia and to identify heterozygotes when clinically indicated.  相似文献   
69.
Fountoulakis M 《Amino acids》2001,21(4):363-381
Summary. Proteomics is the science that studies the proteins in general and in particular their changes, resulting from various disorders or the effect of external factors, such as toxic agents. It has as goal the detection of novel drug targets, diagnostic markers and the investigation of biological events. Proteomics has emerged the last few years and its major difference from the previously existing protein analytical techniques is that it does not analyze the proteins one by one, but in a possibly automated, large-scale mode. In this article, the state of the art of proteomics in our laboratory is presented, as well as selected applications of proteomics in the study of disorders of the central nervous system and of toxic events. Received March 5, 2001 Accepted September 13, 2001  相似文献   
70.
A patient with Gilles de la Tourette syndrome treated with haloperidol, ingested once daily after awakening from sleep, exhibited an irregular sleep-wake pattern with a free-running component of approximately 48 h. Transfer to risperidone, ingested once daily after awakening from sleep, was beneficial resulting in a sleep-wake cycle more synchronized at the appropriate phase to the external zeitgebers, and fewer nocturnal disturbances. The circadian sleep-wake schedule was fully synchronized when the patient had been subsequently treated with melatonin at 21:00h, before intended nocturnal sleep, in addition to risperidone in the morning. Restoration of the sleep-wake circadian pattern was accompanied by the patient's subjective report of significant improvement in his quality of life, social interactions, and occupational status. This observation suggests that circadian rhythm sleep disorders can be related to the typical neuroleptic haloperidol and restored by the atypical neuroleptic risperidone. Similar findings reported in patients suffering from other disorders support the hypothesis that the described disruption of the sleep-wake schedule is medication rather than illness-related. Therefore, it is very important to realize that circadian rhythm sleep disorders may be a side effect of neuroleptics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号