首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   332篇
  免费   49篇
  国内免费   7篇
  388篇
  2024年   1篇
  2023年   21篇
  2022年   12篇
  2021年   18篇
  2020年   18篇
  2019年   30篇
  2018年   22篇
  2017年   12篇
  2016年   20篇
  2015年   16篇
  2014年   31篇
  2013年   26篇
  2012年   12篇
  2011年   14篇
  2010年   12篇
  2009年   12篇
  2008年   20篇
  2007年   19篇
  2006年   9篇
  2005年   12篇
  2004年   8篇
  2003年   8篇
  2002年   8篇
  2001年   6篇
  2000年   3篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1988年   2篇
排序方式: 共有388条查询结果,搜索用时 15 毫秒
91.
Mice co-expressing the Swedish amyloid precursor protein mutation (APP(Swe)) and exon 9 deletion (DeltaE9) of the PSEN1 gene begin to develop amyloid plaques at 6-7 months of age. We demonstrate here a spatial learning deficit in 7-month-old APP(Swe) + PSEN1DeltaE9 bigenic mice using an adaptation of the Barnes maze. Mice were first trained on a cued target followed by a hidden-target condition. Although bigenic mice quickly learned the cued-target version of the task, they were significantly impaired when switched to the hidden-target version. In contrast, a separate group of double-transgenic mice trained first on the spatial hidden-target version of the task were unimpaired relative to wild-type controls. We propose that processes such as general rule learning, context learning and exploratory habituation exert a greater influence when the testing environment is novel and overshadow the spatial memory deficit in naive bigenic mice. However, when cued-target training is conducted first, these processes habituate and the spatial learning deficit is unmasked. Seven-month-old APP(Swe) + PSEN1DeltaE9 mice were unimpaired on tests of memory that did not involve learning the rules governing spatial associations.  相似文献   
92.
KCNQ/Kv7 channels conduct voltage‐dependent outward potassium currents that potently decrease neuronal excitability. Heterozygous inherited mutations in their principle subunits Kv7.2/KCNQ2 and Kv7.3/KCNQ3 cause benign familial neonatal epilepsy whereas patients with de novo heterozygous Kv7.2 mutations are associated with early‐onset epileptic encephalopathy and neurodevelopmental disorders characterized by intellectual disability, developmental delay and autism. However, the role of Kv7.2‐containing Kv7 channels in behaviors especially autism‐associated behaviors has not been described. Because pathogenic Kv7.2 mutations in patients are typically heterozygous loss‐of‐function mutations, we investigated the contributions of Kv7.2 to exploratory, social, repetitive and compulsive‐like behaviors by behavioral phenotyping of both male and female KCNQ2+/? mice that were heterozygous null for the KCNQ2 gene. Compared with their wild‐type littermates, male and female KCNQ2+/? mice displayed increased locomotor activity in their home cage during the light phase but not the dark phase and showed no difference in motor coordination, suggesting hyperactivity during the inactive light phase. In the dark phase, KCNQ2+/? group showed enhanced exploratory behaviors, and repetitive grooming but decreased sociability with sex differences in the degree of these behaviors. While male KCNQ2+/? mice displayed enhanced compulsive‐like behavior and social dominance, female KCNQ2+/? mice did not. In addition to elevated seizure susceptibility, our findings together indicate that heterozygous loss of Kv7.2 induces behavioral abnormalities including autism‐associated behaviors such as reduced sociability and enhanced repetitive behaviors. Therefore, our study is the first to provide a tangible link between loss‐of‐function Kv7.2 mutations and the behavioral comorbidities of Kv7.2‐associated epilepsy.  相似文献   
93.
The C57BL/6JOlaHsd and 129S2/SvHsd mice were tested in a battery designed for behavioral phenotyping of genetically modified mice. The study was performed in order to reveal the effect of training history on the behavior by comparison with the experimentally naïve mice in the same tests. Significant strain differences were obtained in all experiments. Previous handling and testing reduced exploratory activity and emotionality significantly in the mice. The coordination ability was better and nociceptive sensitivity was increased in the trained mice. The contextual fear was reduced whereas the cued fear was enhanced in the experienced mice. The training history did not alter initial learning in the water maze. However, after reversal learning the naïve mice displayed significant preference for both old and new platform locations, whereas the battery animals did not exhibit preference to the old location. The experienced mice appeared to be less active in the forced swimming test and exhibited decreased conditioned taste aversion. The influence of test history was strain-dependent in certain cases. Therefore, the experience has substantial consequences on the behavior, mainly by reducing exploratory activity, and the previous experience of the animals has always to be considered in the analysis of genetically modified mice.  相似文献   
94.
Mutant mice that lack serotonin(1A) receptors exhibit enhanced anxiety-related behaviors, a phenotype that is hypothesized to result from impaired autoinhibitory control of midbrain serotonergic neuronal firing. Here we examined the impact of serotonin(1A) receptor deletion on forebrain serotonin neurotransmission using in vivo microdialysis in the frontal cortex and ventral hippocampus of serotonin(1A) receptor mutant and wild-type mice. Baseline dialysate serotonin levels were significantly elevated in mutant animals as compared with wild-types both in frontal cortex (mutant = 0.44 +/- 0.05 n M; wild-type = 0.28 +/- 0.03 n M) and hippocampus (mutant = 0.46 +/- 0.07 n M; wild-type = 0.27 +/- 0.04 n M). A stressor known to elicit enhanced anxiety-like behaviors in serotonin(1A) receptor mutants increased dialysate 5-HT levels in the frontal cortex of mutant mice by 144% while producing no alteration in cortical 5-HT in wild-type mice. There was no phenotypic difference in the effect of this stressor on serotonin levels in the hippocampus. Fluoxetine produced significantly greater increases in dialysate 5-HT content in serotonin(1A) receptor mutants as compared with wild-types, with two- and three-fold greater responses being observed in the hippocampus and frontal cortex, respectively. This phenotypic effect was mimicked in wild-types by pretreatment with the serotonin(1A) antagonist 4-iodo-N-[2-[4-(methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinyl-benzamide (p-MPPI). These results indicate that deletion of central serotonin(1A) receptors results in a tonic disinhibition of central serotonin neurotransmission, with a greater dysregulation of serotonin release in the frontal cortex than ventral hippocampus under conditions of stress or increased interstitial serotonin levels.  相似文献   
95.
The usefulness of current psychiatric classification, which is based on ICD/DSM categorical diagnoses, remains questionable. A promising alternative has been put forward as the “transdiagnostic” approach. This is expected to cut across existing categorical diagnoses and go beyond them, to improve the way we classify and treat mental disorders. This systematic review explores whether self‐defining transdiagnostic research meets such high expectations. A multi‐step Web of Science literature search was performed according to an a priori protocol, to identify all studies that used the word “transdiagnostic” in their title, up to May 5, 2018. Empirical variables which indexed core characteristics were extracted, complemented by a bibliometric and conceptual analysis. A total of 111 studies were included. Most studies were investigating interventions, followed by cognition and psychological processes, and neuroscientific topics. Their samples ranged from 15 to 91,199 (median 148) participants, with a mean age from 10 to more than 60 (median 33) years. There were several methodological inconsistencies relating to the definition of the gold standard (DSM/ICD diagnoses), of the outcome measures and of the transdiagnostic approach. The quality of the studies was generally low and only a few findings were externally replicated. The majority of studies tested transdiagnostic features cutting across different diagnoses, and only a few tested new classification systems beyond the existing diagnoses. About one fifth of the studies were not transdiagnostic at all, because they investigated symptoms and not disorders, a single disorder, or because there was no diagnostic information. The bibliometric analysis revealed that transdiagnostic research largely restricted its focus to anxiety and depressive disorders. The conceptual analysis showed that transdiagnostic research is grounded more on rediscoveries than on true innovations, and that it is affected by some conceptual biases. To date, transdiagnostic approaches have not delivered a credible paradigm shift that can impact classification and clinical care. Practical “TRANSD”iagnostic recommendations are proposed here to guide future research in this field.  相似文献   
96.
Behavioral inhibition (BI) is an adaptive defensive response to threat; however, children who display extreme BI as a stable trait are at risk for development of anxiety disorders and depression. The present study validates a rodent model of BI based on an ethologically relevant predator exposure paradigm. We show that individual differences in rat BI are stable and trait‐like from adolescence into adulthood. Using in situ hybridization to quantify expression of the immediate early genes homer1a and fos as measures of neuronal activation, we show that individual differences in BI are correlated with the activation of various stress‐responsive brain regions that include the paraventricular nucleus of the hypothalamus and CA3 region of the hippocampus. Further supporting the concept that threat‐induced BI in rodents reflects levels of anxiety, we also show that BI is decreased by administration of the anxiolytic, diazepam. Finally, we developed criteria for identifying extreme BI animals that are stable in their expression of high levels of BI and also show that high BI (HBI) individuals exhibit maladaptive appetitive responses following stress exposure. These findings support the use of predator threat as a stimulus and HBI rats as a model to study mechanisms underlying extreme and stable BI in humans.  相似文献   
97.
Eight experiments supported the hypotheses that reflexive testosterone release by male mice during sexual encounters reduces male anxiety (operationally defined in terms of behavior on an elevated plus-maze) and that this anxiolysis is mediated by the conversion of testosterone to neurosteroids that interact with GABA(A) receptors. In Experiment 1, a 10-min exposure to opposite-sex conspecifics significantly reduced both male and female anxiety 20 min later (as indexed by increased open-arm time on an elevated plus-maze) compared to control mice not receiving this exposure. In contrast, locomotor activity (as indexed by enclosed-arm entries on the elevated plus-maze) was not significantly affected. The remaining experiments examined only male behavior. In Experiment 2, exposure to female urine alone was anxiolytic while locomotor activity was not significantly affected. Thus, urinary pheromones of female mice likely initiated the events leading to the male anxiolysis. In phase 1 of Experiment 3, sc injections of 500 microg of testosterone significantly reduced anxiety 30 min later while locomotor activity was not significantly affected. Thus, testosterone elevations were associated with reduced male anxiety and the time course consistent with a nongenomic, or very rapid genomic, mechanism of testosterone action. In phase 2 of Experiment 3, the anxiolytic effect of testosterone was dose dependent with a 250 microg sc injection required. Thus, testosterone levels likely must be well above baseline levels (i.e., in the range induced by pulsatile release) in order to induce anxiolysis. In Experiment 4, a high dosage of 5alpha-dihydrotestosterone was more anxiolytic than a high dosage of estradiol benzoate, suggesting that testosterone action may require 5alpha-reduction. In Experiments 5 and 6, 3alpha,5alpha-reduced neurosteroid metabolites of testosterone (androsterone and 3alpha-androstandione) were both anxiolytic at a lower dosage (100 microg/sc injection) than testosterone, supporting the notion that testosterone is converted into neurosteroid metabolites for anxiolytic activity. Experiments 7 and 8 found that either picrotoxin or bicucculine, noncompetitive and competitive antagonists of the GABA(A) receptor, respectively, blocked the anxiolytic effects of testosterone. However, conclusions from these 2 experiments must be tempered by the reduction in locomotor activity that was also seen. The possible brain locations of testosterone action as well as the possible adaptive significance of this anxiolytic response are discussed.  相似文献   
98.
99.
Organic cation transporters (OCTs) are carrier-type polyspecific permeases known to participate in low-affinity extraneuronal catecholamine uptake in peripheral tissues. OCT3 is the OCT subtype most represented in the brain, yet its implication in central aminergic neurotransmission in vivo had not been directly demonstrated. In a detailed immunohistochemistry study, we show that OCT3 is expressed in aminergic pathways in the mouse brain, particularly in dopaminergic neurons of the substantia nigra compacta, non-aminergic neurons of the ventral tegmental area, substantia nigra reticulata (SNr), locus coeruleus, hippocampus and cortex. Although OCT3 was found mainly in neurons, it was also occasionally detected in astrocytes in the SNr, hippocampus and several hypothalamic nuclei. In agreement with this distribution, OCT3/Slc22a3-deficient mice show evidence of altered monoamine neurotransmission in the brain, with decreased intracellular content and increased turnover of aminergic transmitters. The behavioral characterization of these mutants reveal subtle behavioral alterations such as increased sensitivity to psychostimulants and increased levels of anxiety and stress. Altogether our data support a role of OCT3 in the homeostastic regulation of aminergic neurotransmission in the brain.  相似文献   
100.
SK3 K(+) channels influence neuronal excitability and are present in 5-hydroxytryptamine (5-HT) and dopamine (DA) nuclei in the brain stem. We therefore hypothesized that SK3 channels affect 5-HT and DA neurotransmission and associated behaviors. To explore this, we used doxycycline-induced conditional SK3-deficient (T/T) mice. In microdialysis, T/T mice had elevated baseline levels of striatal extracellular DA and the metabolites dihydroxyphenylacetic acid and homovanillic acid. While baseline hippocampal extracellular 5-HT was unchanged in T/T mice, the 5-HT response to the 5-HT transporter inhibitor citalopram was enhanced. Furthermore, baseline levels of the 5-HT metabolite 5-hydroxyindoleacetic acid were elevated in T/T mice. T/T mice performed equally to wild type (WT) in most sensory and motor tests, indicating that SK3 deficiency does not lead to gross impairments. In the forced swim and tail suspension tests, the T/T mice displayed reduced immobility compared with WT, indicative of an antidepressant-like phenotype. Female T/T mice were more anxious in the zero maze. In contrast, anxiety-like behaviors in the open-field and four-plate tests were unchanged in T/T mice of both sexes. Home cage diurnal activity was also unchanged in T/T mice. However, SK3 deficiency had a complex effect on activity responses to novelty: T/T mice showed decreased, increased or unchanged activity responses to novelty, depending on sex and context. In summary, we report that SK3 deficiency leads to enhanced DA and 5-HT neurotransmission accompanied by distinct alterations in emotional behaviors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号