首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3617篇
  免费   289篇
  国内免费   201篇
  2024年   15篇
  2023年   82篇
  2022年   93篇
  2021年   175篇
  2020年   185篇
  2019年   208篇
  2018年   190篇
  2017年   163篇
  2016年   168篇
  2015年   250篇
  2014年   335篇
  2013年   457篇
  2012年   189篇
  2011年   173篇
  2010年   132篇
  2009年   144篇
  2008年   136篇
  2007年   124篇
  2006年   114篇
  2005年   106篇
  2004年   101篇
  2003年   76篇
  2002年   58篇
  2001年   40篇
  2000年   25篇
  1999年   32篇
  1998年   31篇
  1997年   20篇
  1996年   19篇
  1995年   26篇
  1994年   30篇
  1993年   20篇
  1992年   17篇
  1991年   16篇
  1990年   20篇
  1989年   14篇
  1988年   9篇
  1987年   16篇
  1986年   6篇
  1985年   12篇
  1984年   20篇
  1983年   17篇
  1982年   22篇
  1981年   5篇
  1980年   9篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有4107条查询结果,搜索用时 22 毫秒
91.
Genetic variation plays a fundamental role in pathogen''s adaptation to environmental stresses. Pathogens with low genetic variation tend to survive and proliferate more poorly due to their lack of genotypic/phenotypic polymorphisms in responding to fluctuating environments. Evolutionary theory hypothesizes that the adaptive disadvantage of genes with low genomic variation can be compensated for structural diversity of proteins through post‐translation modification (PTM) but this theory is rarely tested experimentally and its implication to sustainable disease management is hardly discussed. In this study, we analyzed nucleotide characteristics of eukaryotic translation elongation factor‐1α (eEF‐lα) gene from 165 Phytophthora infestans isolates and the physical and chemical properties of its derived proteins. We found a low sequence variation of eEF‐lα protein, possibly attributable to purifying selection and a lack of intra‐genic recombination rather than reduced mutation. In the only two isoforms detected by the study, the major one accounted for >95% of the pathogen collection and displayed a significantly higher fitness than the minor one. High lysine representation enhances the opportunity of the eEF‐1α protein to be methylated and the absence of disulfide bonds is consistent with the structural prediction showing that many disordered regions are existed in the protein. Methylation, structural disordering, and possibly other PTMs ensure the ability of the protein to modify its functions during biological, cellular and biochemical processes, and compensate for its adaptive disadvantage caused by sequence conservation. Our results indicate that PTMs may function synergistically with nucleotide codes to regulate the adaptive landscape of eEF‐1α, possibly as well as other housekeeping genes, in P. infestans. Compensatory evolution between pre‐ and post‐translational phase in eEF‐1α could enable pathogens quickly adapting to disease management strategies while efficiently maintaining critical roles of the protein playing in biological, cellular, and biochemical activities. Implications of these results to sustainable plant disease management are discussed.  相似文献   
92.
Dedicated to Prof. Jan H. J. Hoeijmakers.

Referee: Dr. Nawin C. Mishra, Professor of Genetics, University of South Carolina, Department of Biological Sciences, Columbia, SC 29208

Despite stable genomes of all living organisms, they are subject to damage by chemical and physical agents in the environment (e.g., UV and ionizing radiations, chemical mutagens, fungal and bacterial toxins, etc.) and by free radicals or alkylating agents endogenously generated in metabolism. DNA is also damaged because of errors during its replication. The DNA lesions produced by these damaging agents could be altered base, missing base, mismatch base, deletion or insertion, linked pyrimidines, strand breaks, intra- and inter-strand cross-links.  相似文献   
93.
94.
95.
A new noninvasive screening tool for colorectal neoplasia detects epigenetic alterations exhibited by gastrointestinal tumor cells shed into stool. There is insufficient existing data to determine temporal associations between colorectal cancer (CRC) progression and aberrant DNA methylation. To evaluate the feasibility of using fecal DNA methylation status to determine CRC progression, we collected stool samples from 14 male SD rats aged six weeks, and administered subcutaneous injections of either 1,2-dimethylhydrazine or saline weekly. p16 DNA methylation statuses in tumorous and normal colon tissue, and from stool samples were determined using methylation-specific PCR. Additionally, p16 methylation was detected in stool DNA from 85.7% of the CRC rats. The earliest change in p16 methylation status in the DMH-treated group stool samples occurred during week nine; repeatabilities were 57.1% in week 19 (p = 0.070) and 85.7% in week 34 (p = 0.005). A temporal correlation was evidenced between progression of CRC and p16 methylation status, as evidenced by DMH-induced rat feces. Using fecal DNA methylation status to determine colorectal tissue methylation status can reveal CRC progression. Our data suggests that p16 promoter methylation is a feasible epigenetic marker for the detection and may be useful for CRC screening.  相似文献   
96.
97.
98.
Oncogene-induced senescence (OIS) is characterised by a stable cell cycle arrest triggered by activated oncogenes and tumour suppressors. Whilst the in vivo relevance of OIS as a mode of tumour suppression is now beyond doubt many key questions with regard to the underlying mechanisms remain unanswered. To address these questions, we first review current knowledge of the essential players and pathways in OIS focussing our discussions mainly on murine cell systems and the paradigm of Ras-induced senescence. We then update experimental evidence for the involvement of the Runx genes that have recently emerged as important mediators of OIS. Of particular interest is the observation that Runx2 disruption renders primary murine embryonic fibroblasts (MEFs) refractory to Ras-induced senescence despite induction of a cascade of growth inhibitors and senescence markers. We suggest that Runx acts downstream of p53 in the "execution phase" of senescence specifically through deregulation of cyclin gene expression. We speculate how this might operate and consider the implications of these findings for the emerging role of the Runx family as tumour suppressors.  相似文献   
99.
DNA甲基化与基因表达调控研究进展   总被引:4,自引:0,他引:4  
表观遗传修饰是指不改变DNA序列的、可遗传的对碱基和组蛋白的化学修饰,主要包括DNA甲基化、组蛋白修饰、染色质重塑以及非编码RNA等.表观遗传修饰是更高层次的基因表达调控手段.DNA甲基化是一种重要的表观遗传修饰,参与基因表达调控、基因印记、转座子沉默、X染色体失活以及癌症发生等重要生物学过程.近年来随着研究方法和技术的进步,全基因组DNA甲基化的研究广泛兴起,多个物种全基因组甲基化图谱被破译,全局水平对DNA甲基化的研究不仅利于在宏观层面上了解DNA甲基化的特性与规律,同时也为深入分析DNA甲基化的生物学功能与调控奠定了基础.结合最新研究进展综述DNA甲基化在基因组中的分布模式、规律以及和基因转录的关系等.  相似文献   
100.
Recently, a significant epigenetic component in the pathology of suicide has been realized. Here we investigate candidate functional SNPs in epigenetic‐regulatory genes, DNMT1 and DNMT3B, for association with suicide attempt (SA) among patients with co‐existing psychiatric illness. In addition, global DNA methylation levels [5‐methyl cytosine (5‐mC%)] between SA and psychiatric controls were quantified using the Methylflash Methylated DNA Quantification Kit. DNA was obtained from blood of 79 suicide attempters and 80 non‐attempters, assessed for DSM‐IV Axis I disorders. Functional SNPs were selected for each gene (DNMT1; n = 7, DNMT3B; n = 10), and genotyped. A SNP (rs2424932) residing in the 3′ UTR of the DNMT3B gene was associated with SA compared with a non‐attempter control group (P = 0.001; Chi‐squared test, Bonferroni adjusted P value = 0.02). Moreover, haplotype analysis identified a DNMT3B haplotype which differed between cases and controls, however this association did not hold after Bonferroni correction (P = 0.01, Bonferroni adjusted P value = 0.56). Global methylation analysis showed that psychiatric patients with a history of SA had significantly higher levels of global DNA methylation compared with controls (P = 0.018, Student's t‐test). In conclusion, this is the first report investigating polymorphisms in DNMT genes and global DNA methylation quantification in SA risk. Preliminary findings suggest that allelic variability in DNMT3B may be relevant to the underlying diathesis for suicidal acts and our findings support the hypothesis that aberrant DNA methylation profiles may contribute to the biology of suicidal acts. Thus, analysis of global DNA hypermethylation in blood may represent a biomarker for increased SA risk in psychiatric patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号