首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3597篇
  免费   286篇
  国内免费   204篇
  2024年   10篇
  2023年   75篇
  2022年   86篇
  2021年   175篇
  2020年   185篇
  2019年   208篇
  2018年   190篇
  2017年   162篇
  2016年   168篇
  2015年   250篇
  2014年   335篇
  2013年   457篇
  2012年   189篇
  2011年   173篇
  2010年   132篇
  2009年   144篇
  2008年   136篇
  2007年   124篇
  2006年   114篇
  2005年   106篇
  2004年   101篇
  2003年   76篇
  2002年   58篇
  2001年   40篇
  2000年   25篇
  1999年   32篇
  1998年   31篇
  1997年   20篇
  1996年   19篇
  1995年   26篇
  1994年   30篇
  1993年   20篇
  1992年   17篇
  1991年   16篇
  1990年   20篇
  1989年   14篇
  1988年   9篇
  1987年   16篇
  1986年   6篇
  1985年   12篇
  1984年   20篇
  1983年   17篇
  1982年   22篇
  1981年   5篇
  1980年   9篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有4087条查询结果,搜索用时 281 毫秒
31.
The in vitro conservation of potato using tissue culture medium supplemented with the growth retardant mannitol causes morphological changes in the propagated material. These culture conditions seem to have an affect on the DNA extracted from the regenerated plants, when it is digested by the methylation sensitive restriction enzymes Hpa II/Msp I and Eco RII/Bst NI, compared to the control material. In most of these plants, there appears to be preferential methylation of nuclear domains that contain Eco RII/Bst NI recognition sites in contrast to those that contain Hpa II/Msp I sites. The refractory nature of the isolated DNA to these restriction enzymes was attributed to hypermethylation of genomic DNA and the ribosomal RNA genes. These findings indicate that methylation of DNA sequences may be an adaptive response to conditions of high osmotic stress. The importance of these results for the conservation of potato germplasm and international exchange is discussed.  相似文献   
32.
Soybean is believed to be a diploidized tetraploid generated from an allotetraploid ancestor. In this study, we used hypomethylated genomic DNA as a source of probes to investigate the genomic structure and methylation patterns of duplicated sequences. Forty-five genomic clones from Phaseolus vulgaris and 664 genomic clones from Glycine max were used to examine the duplicated regions in the soybean genome. Southern analysis of genomic DNA using probes from both sources revealed that greater than 15% of the hypomethylated genomic regions were only present once in the soybean genome. The remaining ca. 85% of the hypomethylated regions comprise duplicated or middle repetitive DNA sequences. If only the ratio of single to duplicate probe patterns is considered, it appears that 25% of the single-copy sequences have been lost. By using a subset of probes that only detected duplicated sequences, we examined the methylation status of the homeologous genomes with the restriction enzymes MspI and HpaII. We found that in all cases both copies of these regions were hypomethylated, although there were examples of low-level methylation. It appears that duplicate sequences are being eliminated in the diploidization process. Our data reveal no evidence that duplicated sequences are being silenced by inactivation correlated with methylation patterns.  相似文献   
33.
A T-DNA locus comprising nptII, uidA and nos genes — all under the control of the nos promoter (this locus was designated K because it encodes resistance to Kanamycin) - was found to be inherited erratically in a transgenic tobacco line. This anomalous behavior was partially explained following a karyotype analysis of plants representing several generations: these plants were aneuploids, presumably for the K-containing chromosome. During four generations of sexual propagation, transgenic plants that were either trisomic or tetrasomic for the K-containing chromosome (i.e. 2n=49 or 2n=50, respectively) were obtained. The trisomic plants (2n=48+1) were virtually indistinguishable phenotypically from normal euploids (2n=4x=48), whereas the tetrasomic plants (2n=48+2) were smaller, had somewhat misshapen leaves and exhibited reduced fertility. Although the amount of NPTH protein in different trisomic (K--, KK-, KKK) and tetrasomic (KK--, KKK-) plants was generally consistent with a K dosage effect, the genetic behavior of each trisomic — with respect to segregation of KanR and marker gene activity in progeny — was unique and not completely explicable by invoking aneuploidy. Specifically, unexpected gains or losses of K could occur, suggesting the formation of double reductional gametes and/or frequent gene conversion at this locus. The susceptibility of K locus marker genes to trans-inactivation in the trisomic and tetrasomic lines was tested by crossing in partially homologous silencing loci. In all transgenotypes tested, the three K marker genes were sensitive to trans-silencing, which was accompanied by methylation in all copies of the nos promoter. In addition to this directed inactivation/methylation, the K locus could also undergo infrequent, spontaneous partial methylation, which produced stable epialleles. In most plants, however, the multiple copies of the nos promoter at this locus remained unmethylated and active through four generations in all transgenotypes examined. The significance of these results for irregular inheritance patterns, aneuploid syndromes and homology-dependent gene silencing is discussed.  相似文献   
34.
Human neuroblastoma cholinergic LA-N-2 cells were used as an experimental model to test the possibility that the methylation of phosphoethanolamine (PEtn) to phosphocholine (PCho) and free choline (Cho) (Andriamampandry et al. 1989) could contribute to acetylcholine (AcCho) synthesis. LA-N-2 cells were incubated with [3H]Cho for 90 min and 22.7% of the radioactivity was present in PCho, 18.5% in free Cho and 4.8% as AcCho. The ratio of Cho/AcCho, however, was of about 1 after 16 hours of incubation. The incorporation of 10M [3H]ethanolamine (Etn) into MeEtn, PMeEtn, PMe2Etn and their corresponding phospholipids was reduced in cells incubated in medium containing 7.2M choline as compared to cells incubated in medium devoid of choline indicating that the lack of Cho from the incubation medium stimulated the conversion of PEtn to Cho water soluble derivatives. Incubation of LA-N-2 cells with [3H]Etn led to the labelling of [3H]AcCho. Cultures incubated in parallel with [3H]Cho showed that roughly 10% of [3H]AcCho obtained after 16 hrs of incubation with the Cho label derived from [3H]Etn. The synthesis of Cho and AcCho from Etn may be enhanced after cellular differentiation induced by the growth of the cells in the presence of retinoic acid (RA). The results indicate that the methylation of [3H]Etn and/or of [3H]PEtn may be used by cholinergic neurons as precursor for AcCho.Abbreviations Etn ethanolamine - MeEtn monomethylethanolamine - Me2Etn dimethylethanolamine - P- phosphoryl - AcCho acetylcholine - Ptd phosphatidyl - LPtd lysophosphatidyl - RA retinoic acid  相似文献   
35.
S-adenosyl-l-methionine (AdoMet) has been reported to affect events linked to noradrenergic neurotransmission. In the present work, we studied the effect of AdoMet on norepinephrine (NE)-stimulated inositol phosphate production in3H-inositol-labelled crude synaptosomal suspensions of rat brain. AdoMet (50–1000 M) decreased both the synthesis of labelled polyphosphoinositide (30–50%) and the release of inositol mono- and bisphosphate (40–50%). The AdoMet effect was not dependent on NE concentration (10–1000 M), suggesting that the inhibition of inositol phosphate release was not the result of a modification of the norepinephrine binding to its receptor sites. S-adenosyl-L-homocysteine (AdoHcy) (1 mM) an inhibitor of methyltransferase activities, partially inhibited (70%) the AdoMet (0.1 mM) effect, indicating that the methylation processes cannot explain all the effects observed. We conclude that, in addition to previously reported effects of AdoMet on NE transport, AdoMet may reduce NE-linked intracellular signalling.  相似文献   
36.
Reader domains that recognize methylated lysine and arginine residues on histones play a role in the recruitment, stabilization, and regulation of chromatin regulatory proteins. Targeting reader proteins with small molecule and peptidomimetic inhibitors has enabled the elucidation of the structure and function of specific domains and uncovered their role in diseases. Recent progress towards chemical probes that target readers of lysine methylation, including the Royal family and plant homeodomains (PHD), is discussed here. We highlight recently developed covalent cyclic peptide inhibitors of a plant homeodomain. Additionally, inhibitors targeting previously untargeted Tudor domains and chromodomains are discussed.  相似文献   
37.
Inhibitors for epigenetic readers of histone modifications are useful chemical probes to interrogate the functional roles played by their cognate targets in epigenetic regulation and can even serve as drugs for the treatment of diseases associated with the dysregulated targets. However, many epigenetic readers are intractable to small molecules, as the recognition of modified histone peptides commonly involves flat and extended protein surfaces. In contrast, the relatively large sizes and structural complexity of peptides help them achieve tight and specific binding to the target proteins. Increasing efforts have been made to target epigenetic readers using peptide-based inhibitors that can complement small molecules. In this review, we discuss the recent advances in the development of peptide-based inhibitors of lysine acetylation and methylation readers.  相似文献   
38.
N6-methyladenosine (m6A) is a dynamic and reversible RNA modification that has emerged as a crucial player in the life cycle of RNA, thus playing a pivotal role in various biological processes. In recent years, the potential involvement of RNA m6A modification in aging and age-related diseases has gained increasing attention, making it a promising target for understanding the molecular mechanisms underlying aging and developing new therapeutic strategies. This Perspective article will summarize the current advances in aging-related m6A regulation, highlighting the most significant findings and their implications for our understanding of cellular senescence and aging, and the potential for targeting RNA m6A regulation as a therapeutic strategy. We will also discuss the limitations and challenges in this field and provide insights into future research directions. By providing a comprehensive overview of the current state of the field, this Perspective article aims to facilitate further advances in our understanding of the molecular mechanisms underlying aging and to identify new therapeutic targets for aging-related diseases.  相似文献   
39.
Biological ageing is connected to life history variation across ecological scales and informs a basic understanding of age-related declines in organismal function. Altered DNA methylation dynamics are a conserved aspect of biological ageing and have recently been modelled to predict chronological age among vertebrate species. In addition to their utility in estimating individual age, differences between chronological and predicted ages arise due to acceleration or deceleration of epigenetic ageing, and these discrepancies are linked to disease risk and multiple life history traits. Although evidence suggests that patterns of DNA methylation can describe ageing in plants, predictions with epigenetic clocks have yet to be performed. Here, we resolve the DNA methylome across CpG, CHG, and CHH-methylation contexts in the loblolly pine tree (Pinus taeda) and construct epigenetic clocks capable of predicting ages in this species within 6% of its maximum lifespan. Although patterns of CHH-methylation showed little association with age, both CpG and CHG-methylation contexts were strongly associated with ageing, largely becoming hypomethylated with age. Among age-associated loci were those in close proximity to malate dehydrogenase, NADH dehydrogenase, and 18S and 26S ribosomal RNA genes. This study reports one of the first epigenetic clocks in plants and demonstrates the universality of age-associated DNA methylation dynamics which can inform conservation and management practices, as well as our ecological and evolutionary understanding of biological ageing in plants.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号