Recently, we have described a panel of metastasis-associated antigens in the rat, i.e., of molecules expressed on metastasizing, but not on nonmetastasizing tumor lines. One of these molecules, recognized by the monoclonal antibody D6.1 and named accordingly D6.1A, was found to be abundantly expressed predominantly on mesenchyme-derived cells. The DNA of the antigen has been isolated and cloned. Surprisingly, the gene product proved to interfere strongly with coagulation.
The 1.182-kb cDNA codes for a 235–amino acid long molecule with a 74.2% homology in the nucleotide and a 70% homology in the amino acid sequence to CO-029, a human tumor-associated molecule. According to the distribution of hydrophobic and hydrophilic amino acids, D6.1A belongs to the tetraspanin superfamily. Western blotting of D6.1A-positive metastasizing tumor lines revealed that the D6.1A, like many tetraspanin molecules, is linked to further membrane molecules, one of which could be identified as α6β1 integrin. Transfection of a low-metastasizing tumor cell line with D6.1A cDNA resulted in increased metastatic potential and provided a clue as to the functional role of D6.1A. We noted massive bleeding around the metastases and, possibly as a consequence, local infarctions predominantly in the mesenteric region and all signs of a consumption coagulopathy. By application of the D6.1 antibody the coagulopathy was counterregulated, though not prevented.
It has been known for many years that tumor growth and progression is frequently accompanied by thrombotic disorders. Our data suggest that the phenomenon could well be associated with the expression of tetraspanin molecules.
Infectious disease data from surveillance systems are typically available as multivariate times series of disease counts in specific administrative geographical regions. Such databases are useful resources to infer temporal and spatiotemporal transmission parameters to better understand and predict disease spread. However, seasonal variation in disease notification is a common feature of surveillance data and needs to be taken into account appropriately. In this paper, we extend a time series model for spatiotemporal surveillance counts to incorporate seasonal variation in three distinct components. A simulation study confirms that the different types of seasonality are identifiable and that a predictive approach suggested for model selection performs well. Application to surveillance data on influenza in Southern Germany reveals a better model fit and improved one‐step‐ahead predictions if all three components allow for seasonal variation. 相似文献
Orthologs are genes from different genomes that originate from a common ancestor gene by speciation event. They are most similar by the structure of encoded proteins and therefore should have a similar function. Here I apply the principle used for detection of structural orthology for a genome-wide analysis of gene expression. For this purpose, I determine the mutual similarity rank in all-by-all comparison of among-tissues expression patterns. The expression of most part of human–mouse orthologs in homologous tissues is poorly correlated (average mutual coexpression rank is only 4835 out of 18,092). Genes from evolutionarily labile gene families, which experience rapid turnover of family composition, are among those with the strongest expression change. However, the revealed phenomenon is not limited to them. There is no or very weak relationship between protein sequence divergence and mutual coexpression rank. Also, generally there is no relationship between the ratio of nonsynonymous to synonymous nucleotide substitutions and coexpression rank. This relationship is tangible only within evolutionarily labile gene families. These results indicate that despite of a similar biochemical function of orthologs reflected in the conserved protein sequence, the physiological (systemic) context of this function can be changed. Also, these results suggest that gene biochemical function and its physiological role in the organism can evolve independently. 相似文献
Protein serine/threonine kinase casein kinase 2 (CK2) is a key player in cell growth and proliferation but is also a potent suppressor of apoptosis. CK2 has been found to be dysregulated in all the cancers that have been examined, including prostate cancer. Investigations of CK2 signaling in the prostate were originally initiated in this laboratory, and these studies have identified significant functional activities of CK2 in relation to normal prostate growth and to the pathobiology of androgen-dependent and -independent prostate cancer. We present a brief overview of these developments in the context of prostate biology. An important outcome of these studies is the emerging concept that CK2 can be effectively targeted for cancer therapy. 相似文献
Summary The distribution of acidic and basic fibroblast growth factors (aFGF, bFGF) was mapped during mouse embryonic palate development. Generally, they localised most intensely in the basement membrane and epithelia rather than the mesenchyme. Localisation was predominantly restricted to the palatal nasal, and medial edge epithelia. Staining was particularly intense in the medial edge epithelia at the time of mid-line epithelial seam formation. Intense staining persisted in the epithelia of the degenerating seam and later in the oral and nasal epithelial triangles. Mouse embryonic palate mesenchyme (MEPM) cells cultured in vitro on a variety of substrata (on plastic, on the surface of a collagen gel and within a collagen gel) responded to treatment with aFGF or bFGF. These responses were modulated by the culture substratum. The FGFs stimulated MEPM cell proliferation on plastic and on collagen, but inhibited cell growth in collagen. The FGFs had little effect on protein production when cells were cultured on plastic, but caused a large reduction in on-collagen and incollagen cultures. This reduction was greater in collagenous than non-collagenous proteins. Generally, treatment with FGFs stimulated the production of glycosaminoglycans (GAGs), particularly hyaluronan (HA) and dermatan sulphate (DS). In addition, the size class of HA was shifted to a higher molecular weight form. These data indicate that aFGF and bFGF may play a role in modulating mesenchymal cell matrix biosynthesis, so facilitating palatal epithelial seam degeneration.
Correspondence to: M.W.J. Ferguson 相似文献
The stable population theory is classically applicable to populations in which there is a maximum age after which individuals die. Demetrius [1972. On an infinite population matrix. Math. Biosci. 13, 133-137] extended this theory to infinite Leslie matrices, in which the longevity of individuals is potentially infinite. However, Demetrius had to assume that the survival probability per time step tends to 0 with age. We generalise here the conditions of application of the stable population theory to infinite Leslie matrix models and apply these results to two examples, including or not senescence. 相似文献
After a myocardial infarction, thinning and expansion of the fibrotic scar contribute to progressive heart failure. The loss of elastin is a major contributor to adverse extracellular matrix remodelling of the infarcted heart, and restoration of the elastic properties of the infarct region can prevent ventricular dysfunction. We implanted cells genetically modified to overexpress elastin to re‐establish the elastic properties of the infarcted myocardium and prevent cardiac failure. A full‐length human elastin cDNA was cloned, subcloned into an adenoviral vector and then transduced into rat bone marrow stromal cells (BMSCs). In vitro studies showed that BMSCs expressed the elastin protein, which was deposited into the extracellular matrix. Transduced BMSCs were injected into the infarcted myocardium of adult rats. Control groups received either BMSCs transduced with the green fluorescent protein gene or medium alone. Elastin deposition in the infarcted myocardium was associated with preservation of myocardial tissue structural integrity (by birefringence of polarized light; P < 0.05 versus controls). As a result, infarct scar thickness and diastolic compliance were maintained and infarct expansion was prevented (P < 0.05 versus controls). Over a 9‐week period, rats implanted with BMSCs demonstrated better cardiac function than medium controls; however, rats receiving BMSCs overexpressing elastin showed the greatest functional improvement (P < 0.01). Overexpression of elastin in the infarcted heart preserved the elastic structure of the extracellular matrix, which, in turn, preserved diastolic function, prevented ventricular dilation and preserved cardiac function. This cell‐based gene therapy provides a new approach to cardiac regeneration. 相似文献
Dopastin, an inhibitor of dopamine β-hydroxylase of microbial origin, was shown to be N-[2(S)-nitrosohydroxylamino-3-methylbutyl] crotonamide based on chemical, spectroscopic and synthetic studies. The total synthesis of dopastin was completed in 8 steps starting from l-valinol. N-Nitrosohydroxylamino function was introduced through an oxaziran with retention of the absolute configuration in the final product. Thus, the 2S-configuration of dopastin was proved by the total synthesis. Racemic dopastin was also synthesized from isobutyraldehyde in 7 steps. 相似文献
A novel survival role of focal adhesion kinase (FAK) that involves its nuclear translocation and direct association with p53 has been demonstrated. Here we examined the relationship between the p53/FAK interaction and Ser46 phosphorylation of p53 (p-p53Ser46) in the apoptotic regulation of human esophageal squamous cell carcinoma (HOSCC) cell lines, expressing either wild type (wt) p53 or mutant (mt) p53-R175H. In contrast to the wt p53 cell lines, the mt p53-R175H cell line was resistant to staurosporine (STS)-mediated detachment and caspase-3 activation. Furthermore, despite the resistance of mt p53-R175H to Ser46 phosphorylation, both wt and mt HOSCC cells translocate FAK into the nucleus and maintain the p53/FAK interaction post STS treatment. These findings provide unique insight into how tumor cells harboring the R175H mutant may resist chemotherapeutic intervention.
Structured summary
MINT-7294020: FAK (uniprotkb:Q05397) physically interacts (MI:0915) with p53 (uniprotkb:P04637) by anti-bait coimmunoprecipitation (MI:0006) 相似文献
The recent discovery of DNA sequences responsible for the specific attachment of chromosomal DNA to the nuclear skeleton (MARs/SARs) was an important step towards our understanding of the functional and structural organization of eukaryotic chromatin [Mirkovitch et al.: Cell 44:273-282, 1984; Cockerill and Garrard: Cell 44:273-282, 1986]. A most important question, however, remains the nature of the matrix proteins involved in the specific binding of the MARs. It has been shown that topoisomerase II and histone H1 were capable of a specific interaction with SARs by the formation of precipitable complexes [Adachi et al.: EMBO J8:3997-4006, 1989; Izaurralde et al.: J Mol Biol 210:573-585, 1989]. Here, applying a different approach, we were able to "visualize" some of the skeletal proteins recognizing and specifically binding MAR-sequences. It is shown that the major matrix proteins are practically the same in both salt- and LIS-extracted matrices. However, the relative MAR-binding activity of the individual protein components may be different, depending on the method of matrix preparation. The immunological approach applied here allowed us to identify some of the individual MAR-binding matrix proteins. Histone H1 and nuclear actin are shown to be not only important components of the matrix, but to be involved in a highly efficient interaction with MAR-sequences as well. Evidence is presented that proteins recognized by the anti-HMG antibodies also participate in MAR-interactions. 相似文献