首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3664篇
  免费   394篇
  国内免费   236篇
  2024年   7篇
  2023年   46篇
  2022年   67篇
  2021年   86篇
  2020年   136篇
  2019年   221篇
  2018年   205篇
  2017年   162篇
  2016年   183篇
  2015年   181篇
  2014年   332篇
  2013年   364篇
  2012年   155篇
  2011年   201篇
  2010年   152篇
  2009年   218篇
  2008年   217篇
  2007年   174篇
  2006年   151篇
  2005年   132篇
  2004年   116篇
  2003年   115篇
  2002年   111篇
  2001年   42篇
  2000年   35篇
  1999年   44篇
  1998年   38篇
  1997年   37篇
  1996年   35篇
  1995年   35篇
  1994年   26篇
  1993年   26篇
  1992年   21篇
  1991年   27篇
  1990年   15篇
  1989年   12篇
  1988年   19篇
  1987年   17篇
  1986年   15篇
  1985年   13篇
  1984年   21篇
  1983年   10篇
  1982年   16篇
  1981年   11篇
  1980年   14篇
  1979年   12篇
  1978年   7篇
  1977年   6篇
  1975年   2篇
  1972年   2篇
排序方式: 共有4294条查询结果,搜索用时 31 毫秒
101.
Muscle force estimation (MFE) has become more and more important in exploring principles of pathological movement, studying functions of artificial muscles, making surgery plan for artificial joint replacement, improving the biomechanical effects of treatments and so on. At present, existing software are complex for professionals, so we have developed a new software named as concise MFE (CMFE). CMFE which provides us a platform to analyse muscle force in various actions includes two MFE methods (static optimisation method and electromyographic-based method). Common features between these two methods have been found and used to improve CMFE. A case studying the major muscles of lower limb of a healthy subject walking at normal speed has been presented. The results are well explained from the effect of the motion produced by muscles during movement. The development of this software can improve the accuracy of the motion simulations and can provide a more extensive and deeper insight in to muscle study.  相似文献   
102.
The aim of this study was to evaluate a surface electromyography (sEMG) signal and force model for the biceps brachii muscle during isotonic isometric contractions for an experimental set-up as well as for a simulation. The proposed model includes a new rate coding scheme and a new analytical formulation of the muscle force generation. The proposed rate coding scheme supposes varying minimum and peak firing frequencies according to motor unit (MU) type (I or II). Practically, the proposed analytical mechanogram allows us to tune the force contribution of each active MU according to its type and instantaneous firing rate. A subsequent sensitivity analysis using a Monte Carlo simulation allows deducing optimised input parameter ranges that guarantee a realistic behaviour of the proposed model according to two existing criteria and an additional one. In fact, this proposed new criterion evaluates the force generation efficiency according to neural intent. Experiments and simulations, at varying force levels and using the optimised parameter ranges, were performed to evaluate the proposed model. As a result, our study showed that the proposed sEMG–force modelling can emulate the biceps brachii behaviour during isotonic isometric contractions.  相似文献   
103.
This work displayed the force capabilities of the musculoskeletal system of the forefinger under external loading. Different states of normal and pathological fingers are studied. We evaluated the impact of losing musculo-tendon unit strength capacities in terms of maximal output fingertip force and tendon tensions distribution. A biomechanical model for a static force analysis is developed through anatomical and kinematic studies. An optimisation approach is then used to determine tendon tension distribution when performing an isometric task. Furthermore, pathological fingers with common cases of injured flexors and extensors are analysed. The method of simulation for forefinger abnormities is described. Furthermore, the simulation results are interpreted.  相似文献   
104.
105.
106.
Cell traction force plays an important role in many biological processes. Several traction force microscopy methods have been developed to determine cell traction forces based on the Boussinesq solution. This approach, however, is rooted in a half-space assumption. The purpose of this study was to determine the error induced in the half-space assumption using a finite element method (FEM). It demonstrates that displacement error between the FEM and the Boussinesq equation can be used to measure the accuracy of the Boussinesq equation, although singularity exists in the loading point. For one concentrated force, significant difference between the FEM and the Boussinesq equation occurs in the whole field; this difference decreases with an increase in the plate thickness. However, in the case of the balanced forces, the offset of the balanced forces decreases the errors in the middle area. Overall, this study demonstrates that increasing the thickness of the polyacrylamide gel is important for reducing the error of the Boussinesq equation when determining the displacement field of the gel under loads.  相似文献   
107.
《Free radical research》2013,47(3):163-172
DNA or 2-deoxyguanosine reacts with hydroxyl free radical to form 8-hydroxy-deoxyguanosine (8-OH-dG). We found that 8-OH-dG can be effectively separated from deoxyguanosine by high pressure liquid chromatography and very sensitively detected using electrochemical detection. The sensitivity by electrochemical detection is about one-thousand fold enhanced over optical detection. Utilizing deoxyguanosine in bicarbonate buffer it was found that ferrous ion, but not ferric ion, was effective in forming 8-OH-dG. The hydroxyl free radical scavenging agents, thiourea and ethanol, were very effective in quenching Fe(11) mediated 8-OH-dG formation, but superoxide dismutase had very little effect.  相似文献   
108.
《Free radical research》2013,47(4-5):303-312
The effect of a variety of proteins and amino acids was investigated on oxygen free radical activity as assessed by copper/hydrogen peroxide induced benzoate hydroxylation as well as copper-catalysed ascor-bate autoxidation. Serum albumins from a variety of species (human, bovine and dog) had both inhibitory and stimulatory effects depending on the molar copper to protein ratio; low ratios were inhibitory and high stimulatory. Some other proteins tested (lysozyme, soybean trypsin inhibitor and conalbumin) also had dual (inhibitory and stimulatory) effects, as did both histidine and polyhistidine, but all effects occurred at different molar ratios presumably dependent on the relative affinities for the copper ions. In contrast, metallolhioncin and cacruloplasmin, proteins specialised to bind copper in vivo had no stimulatory effects. In this paper we show that in addition to their fairly well documented inhibitory effects, under certain conditions some proteins also stimulate radical reactions. The possible role of this phenomenon in vivo is discussed.  相似文献   
109.
ABSTRACT

Atomic force microscopy (AFM) increasingly has been used to analyse “receptor” function, either by using purified proteins (“molecular recognition microscopy”) or, more recently, in situ in living cells. The latter approach has been enabled by the use of a modified commercial AFM, linked to a confocal microscope, which has allowed adhesion forces between ligands and receptors in cells to be measured and mapped, and downstream cellular responses analysed. We review the application of AFM to cell biology and, in particular, to the study of ligand–receptor interactions and draw examples from our own work and that of others to show the utility of AFM, including for the exploration of cell surface functionalities. We also identify shortcomings of AFM in comparison to “standard” methods, such as receptor auto-radiography or immuno-detection, that are widely applied in cell biology and pharmacological analysis.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号