首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1212篇
  免费   68篇
  国内免费   22篇
  2023年   7篇
  2022年   16篇
  2021年   22篇
  2020年   20篇
  2019年   33篇
  2018年   37篇
  2017年   26篇
  2016年   28篇
  2015年   26篇
  2014年   50篇
  2013年   57篇
  2012年   18篇
  2011年   25篇
  2010年   38篇
  2009年   49篇
  2008年   36篇
  2007年   38篇
  2006年   51篇
  2005年   46篇
  2004年   33篇
  2003年   43篇
  2002年   37篇
  2001年   43篇
  2000年   19篇
  1999年   30篇
  1998年   39篇
  1997年   35篇
  1996年   24篇
  1995年   24篇
  1994年   24篇
  1993年   15篇
  1992年   37篇
  1991年   23篇
  1990年   21篇
  1989年   24篇
  1988年   21篇
  1987年   25篇
  1986年   22篇
  1985年   21篇
  1984年   36篇
  1983年   16篇
  1982年   19篇
  1981年   15篇
  1980年   10篇
  1979年   9篇
  1978年   2篇
  1977年   2篇
  1975年   2篇
  1974年   4篇
  1971年   3篇
排序方式: 共有1302条查询结果,搜索用时 203 毫秒
231.
Glutamate transport in blood platelets resembles that in brain nerve terminals because platelets contain neuronal Na+-dependent glutamate transporters, glutamate receptors in the plasma membrane, vesicular glutamate transporters in secretory granules, which use the proton gradient as a driving force, and can release glutamate during aggregation/activation. The acidification of secretory granules and glutamate transport were assessed during acute treatment of isolated platelets with cholesterol-depleting agent methyl-β-cyclodextrin (MβCD). Confocal imaging with the cholesterol-sensitive fluorescent dye filipin showed a quick reduction of cholesterol level in platelets. Using pH-sensitive fluorescent dye acridine orange, we demonstrated that the acidification of secretory granules of human and rabbit platelets was decreased by ∼15% and 51% after the addition of 5 and 15 mM MβCD, respectively. The enrichment of platelet plasma membrane with cholesterol by the application of complex MβCD-cholesterol (1:0.2) led to the additional accumulation of acridine orange in secretory granules indicating an increase in the proton pumping activity of vesicular H+-ATPase. MβCD did not evoke release of glutamate from platelets that was measured with glutamate dehydrogenase assay. Flow cytometric analysis did not reveal alterations in platelet size and granularity in the presence of MβCD. These data showed that the dissipation of the proton gradient of secretory granules rather than their exocytosis caused MβCD-evoked decrease in platelet acidification. Thus, the depletion of plasma membrane cholesterol in the presence of MβCD changed the functional state of platelets affecting storage capacity of secretory granules but did not evoke glutamate release from platelets.  相似文献   
232.
In the bacterium Escherichia coli, the essential inner membrane protein (IMP) YidC assists in the biogenesis of IMPs and IMP complexes. Our current ideas about the function of YidC are based on targeted approaches using only a handful of model IMPs. Proteome-wide approaches are required to further our understanding of the significance of YidC and to find new YidC substrates. Here, using two-dimensional blue native/SDS-PAGE methodology that is suitable for comparative analysis, we have characterized the consequences of YidC depletion for the steady-state levels and oligomeric state of the constituents of the inner membrane proteome. Our analysis showed that (i) YidC depletion reduces the levels of a variety of complexes without changing their composition, (ii) the levels of IMPs containing only soluble domains smaller than 100 amino acids are likely to be reduced upon YidC depletion, whereas the levels of IMPs with at least one soluble domain larger than 100 amino acids do not, and (iii) the levels of a number of proteins with established or putative chaperone activity (HflC, HflK, PpiD, OppA, GroEL and DnaK) are strongly increased in the inner membrane fraction upon YidC depletion. In the absence of YidC, these proteins may assist the folding of sizeable soluble domains of IMPs, thereby supporting their folding and oligomeric assembly. In conclusion, our analysis identifies many new IMPs/IMP complexes that depend on YidC for their biogenesis, responses that accompany depletion of YidC and an IMP characteristic that is associated with YidC dependence.  相似文献   
233.
234.
It is widely recognized that the nature and characteristics of transport across eukaryotic membranes are so complex as to defy intuitive understanding. In these circumstances, quantitative mathematical modeling is an essential tool, both to integrate detailed knowledge of individual transporters and to extract the properties emergent from their interactions. As the first, fully integrated and quantitative modeling environment for the study of ion transport dynamics in a plant cell, OnGuard offers a unique tool for exploring homeostatic properties emerging from the interactions of ion transport, both at the plasma membrane and tonoplast in the guard cell. OnGuard has already yielded detail sufficient to guide phenotypic and mutational studies, and it represents a key step toward ‘reverse engineering’ of stomatal guard cell physiology, based on rational design and testing in simulation, to improve water use efficiency and carbon assimilation. Its construction from the HoTSig libraries enables translation of the software to other cell types, including growing root hairs and pollen. The problems inherent to transport are nonetheless challenging, and are compounded for those unfamiliar with conceptual ‘mindset’ of the modeler. Here we set out guidelines for the use of OnGuard and outline a standardized approach that will enable users to advance quickly to its application both in the classroom and laboratory. We also highlight the uncanny and emergent property of OnGuard models to reproduce the ‘communication’ evident between the plasma membrane and tonoplast of the guard cell.  相似文献   
235.
236.
Bacillus lehensis G1 is a Gram-positive, moderately alkalitolerant bacterium isolated from soil samples. B. lehensis produces cyclodextrin glucanotransferase (CGTase), an enzyme that has enabled the extensive use of cyclodextrin in foodstuffs, chemicals, and pharmaceuticals. The genome sequence of B. lehensis G1 consists of a single circular 3.99 Mb chromosome containing 4017 protein-coding sequences (CDSs), of which 2818 (70.15%) have assigned biological roles, 936 (23.30%) have conserved domains with unknown functions, and 263 (6.55%) have no match with any protein database. Bacillus clausii KSM-K16 was established as the closest relative to B. lehensis G1 based on gene content similarity and 16S rRNA phylogenetic analysis. A total of 2820 proteins from B. lehensis G1 were found to have orthologues in B. clausii, including sodium–proton antiporters, transport proteins, and proteins involved in ATP synthesis. A comparative analysis of these proteins and those in B. clausii and other alkaliphilic Bacillus species was carried out to investigate their contributions towards the alkalitolerance of the microorganism. The similarities and differences in alkalitolerance-related genes among alkalitolerant/alkaliphilic Bacillus species highlight the complex mechanism of pH homeostasis. The B. lehensis G1 genome was also mined for proteins and enzymes with potential viability for industrial and commercial purposes.  相似文献   
237.
238.
239.
240.
In organisms from all kingdoms of life, ammonia and its conjugated ion ammonium are transported across membranes by proteins of the AMT/Rh family. Efficient and successful growth often depends on sufficient ammonium nutrition. The proteins mediating this transport, the so called Ammonium Transporter (AMT) or Rhesus like (Rh) proteins, share a very similar trimeric overall structure and a high sequence similarity even throughout the kingdoms. Even though structural components of the transport mechanism, like an external substrate recruitment site, an essential twin histidine pore motif, a phenylalanine gate and the hydrophobic pore are strongly conserved and have been analyzed in detail by molecular dynamic simulations and mutational studies, the substrate(s), which pass the central pores of the AMT/Rh subunits, NH4+, NH3 + H+, NH4+ + H+ or NH3, are still a matter of debate for most proteins, including the best characterized AmtB protein from Escherichia coli. The lack of a robust expression system for functional analysis has hampered proof of structural and mutational studies, although the NH3 transport function for Rh-like proteins is rarely disputed. In plant transporters belonging to the subfamily AMT1, transport is associated with electrical currents, while some plant transporters, notably of the AMT2 type, were suggested to transport NH3 across the membrane, without associated ionic currents. Here we summarize data in favor of each substrate for the distinct AMT/Rh classes, discuss mutants and how they differ in structure and functionality. A common mechanism with deprotonation and subsequent NH3 transport through the central subunit pore is suggested.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号