首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1214篇
  免费   68篇
  国内免费   22篇
  2023年   7篇
  2022年   18篇
  2021年   22篇
  2020年   20篇
  2019年   33篇
  2018年   37篇
  2017年   26篇
  2016年   28篇
  2015年   26篇
  2014年   50篇
  2013年   57篇
  2012年   18篇
  2011年   25篇
  2010年   38篇
  2009年   49篇
  2008年   36篇
  2007年   38篇
  2006年   51篇
  2005年   46篇
  2004年   33篇
  2003年   43篇
  2002年   37篇
  2001年   43篇
  2000年   19篇
  1999年   30篇
  1998年   39篇
  1997年   35篇
  1996年   24篇
  1995年   24篇
  1994年   24篇
  1993年   15篇
  1992年   37篇
  1991年   23篇
  1990年   21篇
  1989年   24篇
  1988年   21篇
  1987年   25篇
  1986年   22篇
  1985年   21篇
  1984年   36篇
  1983年   16篇
  1982年   19篇
  1981年   15篇
  1980年   10篇
  1979年   9篇
  1978年   2篇
  1977年   2篇
  1975年   2篇
  1974年   4篇
  1971年   3篇
排序方式: 共有1304条查询结果,搜索用时 15 毫秒
111.
We have performed cysteine scanning mutagenesis of the bacteriorhodopsin mutant D85N to explore the role of individual amino acids in the conformational transitions of the reprotonation mechanism. We have used whole-cell reflectance spectroscopy to evaluate the spectral properties of the 59 mutants generated during a scan of the entire F and G helices and the intervening loop region. Cys mutants were grouped into one of six phenotypes based on the spectral changes associated with their M <--> N <--> O intermediate-state transitions. Mutations that produced similar phenotypes were found to cluster in discrete molecular domains and indicate that M, N, and O possess distinct structures and that unique molecular interactions regulate the transitions between them. The distribution of these domains suggests that 1) the extramembranous loop region is involved in the stabilization of the N and M intermediates, 2) lipid-protein interactions play a key role in the accumulation of N, and 3) the amino acid side-chain interactions in the extracellular portion of the interface between helices G and A participate in the accumulation of M.  相似文献   
112.
Molecular dynamics simulation techniques, together with semiempirical PM3 calculations, have been used to investigate the effect of photoisomerization of the 4-hydroxy-cinnamic acid chromophore on the structural properties of the photoactive yellow protein (PYP) from Ectothiorodospira halophila. In this bacteria, exposure to blue light leads to a negative photoactic response. The calculations suggest that the isomerization does not directly destabilize the protein. However, because of the isomerization, a proton transfer from a glutamic acid residue (Glu46) to the phenolate oxygen atom of the chromophore becomes energetically favorable. The proton transfer initiates conformational changes within the protein, which are in turn believed to lead to signaling.  相似文献   
113.
Vanilloid receptor subtype 1, VR1, is an ion channel that serves as a polymodal detector of pain-producing chemicals such as capsaicin and protons in primary afferent neurons. Here we showed that both capsaicin and acidification produced elevations in the intracellular Ca(2+) concentration ([Ca(2+)](i)) in cultured human epidermal keratinocytes. The capsaicin- and acidification-evoked increases in [Ca(2+)](i) were inhibited by capsazepine, an antagonist to VR1. VR1-like immunoreactivity was observed in the cells. These findings suggest that functional VR1-like protein is present and functions as a sensor against noxious chemical stimuli, such as capsaicin or acidification, in epidermal keratinocytes.  相似文献   
114.
The ionization properties of the active site residues in Drosophila lebanonensis alcohol dehydrogenase (DADH) were investigated theoretically by using an approach developed to account for multiple locations of the hydrogen atoms of the titratable and polar groups. The electrostatic calculations show that (a) the protonation/deprotonation transition of the binary complex of DADH is related to the coupled ionization of Tyr151 and Lys155 in the active site and (b) the pH dependence of the proton abstraction is correlated with a reorganization of the hydrogen bond network in the active site. On this basis, a proton relay mechanism for substrate dehydrogenation is proposed in which the O2' ribose hydroxyl group from the coenzyme has a key role and acts as a switch. The proton relay chain includes the active site catalytic residues, as well as a chain of eight water molecules that connects the active site with the bulk solvent.  相似文献   
115.
116.
Tang  Qing-Xiu  Wei  Jia-Mian 《Photosynthetica》2001,39(1):127-129
The contribution of two components (pH and E) of the proton motive force to photosynthesis of C. reinhardtii was studied. Valinomycin, a photophosphorylation uncoupler, decreased significantly the fast phase (related mainly to the membrane electric potential) of millisecond delayed light emission (ms-DLE) of C. reinhardtii. Nigericin, another photophosphorylation uncoupler, decreased the slow phase (related mainly to the proton gradient) and partly also the fast phase of ms-DLE. Both valinomycin and nigericin decreased the net ATP content and photosynthetic rate of C. reinhardtii, but the inhibition by nigericin was stronger than that by valinomycin. Hence both components of the proton motive force contribute to photosynthesis and although the contribution of pH is larger than that of E, the latter is not negligible in photosynthesis of C. reinhardtii.  相似文献   
117.
The E5 oncoprotein of bovine papillomavirus type I is a small, hydrophobic polypeptide localized predominantly in the Golgi complex. E5-mediated transformation is often associated with activation of the PDGF receptor (PDGF-R). However, some E5 mutants fail to induce PDGF-R phosphorylation yet retain transforming activity, suggesting an additional mechanism of action. Since E5 also interacts with the 16-kD pore-forming subunit of the vacuolar H(+)-ATPase (V-ATPase), the oncoprotein could conceivably interfere with the pH homeostasis of the Golgi complex. A pH-sensitive, fluorescent bacterial toxin was used to label this organelle and Golgi pH (pH(G)) was measured by ratio imaging. Whereas pH(G) of untreated cells was acidic (6.5), no acidification was detected in E5-transfected cells (pH approximately 7.0). The Golgi buffering power and the rate of H(+) leakage were found to be comparable in control and transfected cells. Instead, the E5-induced pH differential was attributed to impairment of V-ATPase activity, even though the amount of ATPase present in the Golgi complex was unaltered. Mutations that abolished binding of E5 to the 16-kD subunit or that targeted the oncoprotein to the endoplasmic reticulum abrogated Golgi alkalinization and cellular transformation. Moreover, transformation-competent E5 mutants that were defective for PDGF-R activation alkalinized the Golgi lumen. Neither transformation by sis nor src, two oncoproteins in the PDGF-R signaling pathway, affected pH(G). We conclude that alkalinization of the Golgi complex represents a new biological activity of the E5 oncoprotein that correlates with cellular transformation.  相似文献   
118.
The RGG domain in hnRNP A2 affects subcellular localization   总被引:4,自引:0,他引:4  
The heterogeneous nuclear ribonucleoproteins (hnRNP) associate with pre-mRNA in the nucleus and play an important role in RNA processing and splice site selection. In addition, hnRNP A proteins function in the export of mRNA to the cytoplasm. Although the hnRNP A proteins are predominantly nuclear, hnRNP A1 shuttles rapidly between the nucleus and the cytoplasm. HnRNP A2, whose cytoplasmic overexpression has been identified as an early biomarker of lung cancer, has been less well studied. Cytosolic hnRNP A2 overexpression has also been noted in brain tumors, in which it has been correlated with translational repression of Glucose Transporter-1 expression. We now examine the role of arginine methylation on the nucleocytoplasmic localization of hnRNP A2 in the HEK-293 and NIH-3T3 mammalian cell lines. Treatment of either cell line with the methyltransferase inhibitor adenosine dialdehyde dramatically shifts hnRNP A2 localization from the nuclear to the cytoplasmic compartment, as shown both by immunoblotting and by immunocytochemistry. In vitro radiolabeling with [(3)H]AdoMet of GST-tagged hnRNP A2 RGG mutants, using recombinant protein arginine methyltransferase (PRMT1), shows (i) that hnRNP A2 is a substrate for PRMT1 and (ii) that methylated residues are found only in the RGG domain. Deletion of the RGG domain (R191-G253) of hnRNP A2 results in a cytoplasmic localization phenotype, detected both by immunoblotting and by immunocytochemistry. These studies indicate that the RGG domain of hnRNP A2 contains sequences critical for cellular localization of the protein. The data suggest that hnRNP A2 may contain a novel nuclear localization sequence, regulated by arginine methylation, that lies in the R191-G253 region and may function independently of the M9 transportin-1-binding region in hnRNP A2.  相似文献   
119.
We have sought to elucidate how the oligomycin sensitivity-conferring protein (OSCP) of the mitochondrial F1F0-ATP synthase (mtATPase) can influence proton channel function. Variants of OSCP, from the yeast Saccharomyces cerevisiae, having amino acid substitutions at a strictly conserved residue (Gly166) were expressed in place of normal OSCP. Cells expressing the OSCP variants were able to grow on nonfermentable substrates, albeit with some increase in generation time. Moreover, these strains exhibited increased sensitivity to oligomycin, suggestive of modification in functional interactions between the F1 and F0 sectors mediated by OSCP. Bioenergetic analysis of mitochondria from cells expressing OSCP variants indicated an increased respiratory rate under conditions of no net ATP synthesis. Using specific inhibitors of mtATPase, in conjunction with measurement of changes in mitochondrial transmembrane potential, it was revealed that this increased respiratory rate was a result of increased proton flux through the F0 sector. This proton conductance, which is not coupled to phosphorylation, is exquisitely sensitive to inhibition by oligomycin. Nevertheless, the oxidative phosphorylation capacity of these mitochondria from cells expressing OSCP variants was no different to that of the control. These results suggest that the incorporation of OSCP variants into functional ATP synthase complexes can display effects in the control of proton flux through the F0 sector, most likely mediated through altered protein—protein contacts within the enzyme complex. This conclusion is supported by data indicating impaired stability of solubilized mtATPase complexes that is not, however, reflected in the assembly of functional enzyme complexes in vivo. Given a location for OSCP atop the F1-33 hexamer that is distant from the proton channel, then the modulation of proton flux by OSCP must occur at a distance. We consider how subtle conformational changes in OSCP may be transmitted to F0.  相似文献   
120.
The chloroplast ATP synthase is strictly regulated so that it is very active in the light (rates of ATP synthesis can be higher than 5 mol/min/mg protein), but virtually inactive in the dark. The subunits of the catalytic portion of the ATP synthase involved in activation, as well as the effects of nucleotides are discussed. The relation of activation to proton flux through the ATP synthase and to changes in the structure of enzyme induced by the proton electrochemical gradient are also presented. It is concluded that the and subunits of CF1 play key roles in both regulation of activity and proton translocation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号