首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   576篇
  免费   178篇
  国内免费   241篇
  995篇
  2024年   9篇
  2023年   33篇
  2022年   37篇
  2021年   53篇
  2020年   78篇
  2019年   74篇
  2018年   64篇
  2017年   66篇
  2016年   57篇
  2015年   41篇
  2014年   44篇
  2013年   49篇
  2012年   30篇
  2011年   36篇
  2010年   24篇
  2009年   36篇
  2008年   28篇
  2007年   34篇
  2006年   28篇
  2005年   28篇
  2004年   16篇
  2003年   16篇
  2002年   15篇
  2001年   10篇
  2000年   7篇
  1999年   4篇
  1998年   13篇
  1997年   8篇
  1996年   2篇
  1995年   8篇
  1994年   4篇
  1993年   4篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1986年   4篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1982年   5篇
  1981年   4篇
  1980年   1篇
  1974年   1篇
  1958年   1篇
排序方式: 共有995条查询结果,搜索用时 0 毫秒
101.
Although plant quality can indirectly increase the performance of the third trophic level by bottom-up cascading effects, the mechanisms of this indirect effect are still unclear. In this study the carbon–nitrogen stoichiometry in a tri-trophic system consisting of the willow, a leaf beetle, and a predatory ladybird beetle were examined to determine the mechanisms of the bottom-up cascading effect. The bottom-up cascade is initiated by increasing leaf nitrogen, because of artificial cutting of willow trees. The relative growth rate (RGR) of the leaf beetle increased when fed on cut willow leaves, because of the high leaf nitrogen in the cut willows. Ladybird beetle RGR also increased when fed on leaf beetles fed on cut willow leaves. The increased RGR of the ladybirds cannot be explained by the quality of the prey, however, because leaf beetle nitrogen was not affected by host plant quality. Thus, the carbon–nitrogen stoichiometry could not be a mechanism of the bottom-up cascade through multiple trophic levels.  相似文献   
102.
Two hypotheses have been proposed to explain increases in plant nitrogen (N) and phosphorus (P) concentrations with latitude: (i) geochemical limitation to P availability in the tropics and (ii) temperature driven variation in growth rate, where greater growth rates (requiring greater nutrient levels) are needed to complete growth and reproduction within shorter growing seasons in temperate than tropical climates. These two hypotheses were assessed in one forest type, intertidal mangroves, using fertilized plots at sites between latitudes 36º S and 27º N. The N and P concentrations in mangrove leaf tissue increased with latitude, but there were no trends in N : P ratios. Growth rates of trees, adjusted for average minimum temperature showed a significant increase with latitude supporting the Growth Rate Hypothesis. However, support for the Geochemical Hypothesis was also strong; both photosynthetic P use efficiency and nutrient resorption efficiency decreased with increasing latitude, indicating that P was less limiting to metabolism at the higher latitudes. Our study supports the hypothesis that historically low P availability in the tropics has been an important selective pressure shaping the evolution of plant traits.  相似文献   
103.
Acetylation is frequently detected on mitochondrial enzymes, and the sirtuin deacetylase SIRT3 is thought to regulate metabolism by deacetylating mitochondrial proteins. However, the stoichiometry of acetylation has not been studied and is important for understanding whether SIRT3 regulates or suppresses acetylation. Using quantitative mass spectrometry, we measured acetylation stoichiometry in mouse liver tissue and found that SIRT3 suppressed acetylation to a very low stoichiometry at its target sites. By examining acetylation changes in the liver, heart, brain, and brown adipose tissue of fasted mice, we found that SIRT3‐targeted sites were mostly unaffected by fasting, a dietary manipulation that is thought to regulate metabolism through SIRT3‐dependent deacetylation. Globally increased mitochondrial acetylation in fasted liver tissue, higher stoichiometry at mitochondrial acetylation sites, and greater sensitivity of SIRT3‐targeted sites to chemical acetylation in vitro and fasting‐induced acetylation in vivo, suggest a nonenzymatic mechanism of acetylation. Our data indicate that most mitochondrial acetylation occurs as a low‐level nonenzymatic protein lesion and that SIRT3 functions as a protein repair factor that removes acetylation lesions from lysine residues.  相似文献   
104.
以长期淹水环境下能生长更新的河竹为材料,调查测定了人工喷灌供水(CK)、淹水6个月(TR)的河竹一年生竹鞭的根生物量和主要养分元素含量,分析长期淹水对河竹鞭根养分化学计量特征的影响,为河竹在水湿地和消落带植被恢复中的应用提供理论依据。结果显示:(1)与CK相比,TR处理下的河竹土中根的N、P、Mg和Ca含量显著降低,Fe含量显著升高,且N、K和Ca含量显著低于TR处理下水中根的含量,而Fe含量显著高于水中根。(2)TR处理的河竹土中根的C/N、C/P、C/K和P/K较CK显著升高,且C/K、N/K和P/K显著高于TR处理的水中根。(3)TR处理的河竹水中根的C-N、C-P、N-P均呈极显著正相关关系,土中根的C-P、C-K、P-K均呈极显著正相关关系;CK河竹土中根的C-P、C-K呈极显著正相关关系,且N-P显著相关;从相关系数看,TR处理下土中根的C-N、N-P和N-K相关性减弱,C-P、C-K和P-K相关性增强,而C-N、C-P、N-P和N-K相关性较水中根减弱,C-K和P-K相关性较水中根增强。(4)TR处理下鞭根生物量和C、N、P、K、Mg、Ca积累量较CK分别显著降低19.46%、42.04%、36.55%、41.39%、60.06%和38.46%,而Fe积累量显著升高,为CK的5.5倍;TR处理下土中根养分积累量显著高于水中根。研究表明,长期淹水虽阻碍了河竹鞭根的养分平衡吸收,但能够提高养分利用效率,并且土中根和水中根具有克隆分工特征,水中根主要起到氧气吸收应对缺氧环境胁迫的功能,是河竹适应长期淹水环境的重要生态对策。  相似文献   
105.
Kv4 is a member of the voltage-gated K+ channel family and forms a complex with various accessory subunits. Dipeptidyl aminopeptidase-like protein (DPP) is one of the auxiliary subunits for the Kv4 channel. Although DPP has been well characterized and is known to increase the current amplitude and accelerate the inactivation and recovery from inactivation of Kv4 current, it remains to be determined how many DPPs bind to one Kv4 channel. To examine whether the expression level of DPP changes the biophysical properties of Kv4, we expressed Kv4.2 and DPP10 in different ratios in Xenopus oocytes and analyzed the currents under two-electrode voltage clamp. The current amplitude and the speed of recovery from inactivation of Kv4.2 changed depending on the co-expression level of DPP10. This raised the possibility that the stoichiometry of the Kv4.2-DPP10 complex is variable and affects the biophysical properties of Kv4.2. We next determined the stoichiometry of DPP10 alone by subunit counting using single-molecule imaging. Approximately 70% of the DPP10 formed dimers in the plasma membrane, and the rest existed as monomers in the absence of Kv4.2. We next determined the stoichiometry of the Kv4.2-DPP10 complex; Kv4.2-mCherry and mEGFP-DPP10 were co-expressed in different ratios and the stoichiometries of Kv4.2-DPP10 complexes were evaluated by the subunit counting method. The stoichiometry of the Kv4.2-DPP10 complex was variable depending on the relative expression level of each subunit, with a preference for 4:2 stoichiometry. This preference may come from the bulky dimeric structure of the extracellular domain of DPP10.  相似文献   
106.
Epigenetic complexes play an essential role in regulating chromatin structure, but information about their assembly stoichiometry on chromatin within cells is poorly understood. The cellular assembly stoichiometry is critical for appreciating the initiation, propagation, and maintenance of epigenetic inheritance during normal development and in cancer. By combining genetic engineering, chromatin biochemistry, and single-molecule fluorescence imaging, we developed a novel and sensitive approach termed single-molecule chromatin immunoprecipitation imaging (Sm-ChIPi) to enable investigation of the cellular assembly stoichiometry of epigenetic complexes on chromatin. Sm-ChIPi was validated by using chromatin complexes with known stoichiometry. The stoichiometry of subunits within a polycomb complex and the assembly stoichiometry of polycomb complexes on chromatin have been extensively studied but reached divergent views. Moreover, the cellular assembly stoichiometry of polycomb complexes on chromatin remains unexplored. Using Sm-ChIPi, we demonstrated that within mouse embryonic stem cells, one polycomb repressive complex (PRC) 1 associates with multiple nucleosomes, whereas two PRC2s can bind to a single nucleosome. Furthermore, we obtained direct physical evidence that the nucleoplasmic PRC1 is monomeric, whereas PRC2 can dimerize in the nucleoplasm. We showed that ES cell differentiation induces selective alteration of the assembly stoichiometry of Cbx2 on chromatin but not other PRC1 components. We additionally showed that the PRC2-mediated trimethylation of H3K27 is not required for the assembly stoichiometry of PRC1 on chromatin. Thus, these findings uncover that PRC1 and PRC2 employ distinct mechanisms to assemble on chromatin, and the novel Sm-ChIPi technique could provide single-molecule insight into other epigenetic complexes.  相似文献   
107.
Carbon and nitrogen cycles are coupled through both stoichiometric requirements for microbial biomass and dissimilatory metabolic processes in which microbes catalyse reduction‐oxidation reactions. Here, we integrate stoichiometric theory and thermodynamic principles to explain the commonly observed trade‐off between high nitrate and high organic carbon concentrations, and the even stronger trade‐off between high nitrate and high ammonium concentrations, across a wide range of aquatic ecosystems. Our results suggest these relationships are the emergent properties of both microbial biomass stoichiometry and the availability of terminal electron acceptors. Because elements with multiple oxidation states (i.e. nitrogen, manganese, iron and sulphur) serve as both nutrients and sources of chemical energy in reduced environments, both assimilative demand and dissimilatory uses determine their concentrations across broad spatial gradients. Conceptual and quantitative models that integrate rather than independently examine thermodynamic, stoichiometric and evolutionary controls on biogeochemical cycling are essential for understanding local to global biogeochemical patterns.  相似文献   
108.
为了给笋用竹林土壤合理补充养分提供科学依据,以红哺鸡竹(Phyllostachys iridescens)为对象,开展了长期施用不同肥料(生物有机肥、复合肥、菜籽饼肥和不施肥(对照))竹林2年生立竹叶片C、N、P化学计量学特征的研究。结果表明:叶片C、N、P含量分别为514.26~582.77、18.25~30.20、1.20~1.75mg·g-1,施肥竹林均极显著或显著高于对照竹林,以施菜籽饼肥竹林叶片C含量最高,施生物有机肥竹林叶片N、P含量最高;叶片C:N、C:P分别为18.71~35.02、304.41~458.52,总体上施肥竹林较对照竹林极显著降低,施肥竹林N、P养分利用效率显著降低;叶片N:P为15.28~17.12,相对稳定,施肥竹林与对照竹林无显著差异;叶片N、P含量呈极显著正相关,N含量与N:P相关性不显著,而P含量与N:P呈极显著负相关。  相似文献   
109.
Questions: What is the spectrum of variability of chemical elements in a Mediterranean forest ecosystem across the different compartments? Do co‐existing tree species with different leaf chemical composition and nutrient cycling distinctly modify soil conditions? Could these species‐specific, tree‐generated soil changes create a potential positive feedback by affecting long‐term species distribution? Location: Mixed oak forests of southern Spain, Los Alcornocales Natural Park. Methods: We sampled and chemically analysed five different ecosystem components: leaves, leaf fall, litter and superficial (0–25 cm) and sub‐superficial (25–50 cm) soil beneath the canopies of evergreen Quercus suber and deciduous Q. canariensis trees. We used multiple co‐inertia analysis (MCoA) to conjointly analyse the patterns of variability and covariation of eight macro‐ and micronutrients determined in each of the sampled ecological materials. We implemented a path analysis to investigate alternative causal models of relationships among the chemical properties of the different ecosystem components. Results: Variability in the concentration of chemical elements was related to the nature of their biogeochemical cycles. However, the rank of element concentration was consistent across ecosystem components. Analysis of co‐inertia (MCoA) revealed that there was a common underlying multivariate pattern of nutrient enrichment in the ecosystem, which supported the hypothesis of a separation in biogeochemical niches between the two co‐existing oak species, with Q. canariensis having richer plant tissues and more fertile soil directly under each tree than Q. suber. The feasibility of a potential tree–soil positive feedback model was the only statistically validated among several alternative (non‐feedback) models tested. Conclusions: In the studied Mediterranean forests, oak species distinctly modify soil fertility conditions through different nutrient return pathways. Further investigation is needed to address whether these tree‐generated soil changes could affect seedling establishment and ultimately influence species distribution.  相似文献   
110.
The nutrient concentration in seeds determines many aspects of potential success of the sexual reproductive phase of plants, including the seed predation probability, efficiency of seed dispersal and seedling performance. Despite considerable research interest in latitudinal gradients of foliar nutrients, a similar gradient for seeds remains unexplored. We investigated a potential latitudinal gradient in seed nutrient concentrations within the widespread European understorey forest herb Anemone nemorosa L. We sampled seeds of A. nemorosa in 15 populations along a 1900-km long latitudinal gradient at three to seven seed collection dates post-anthesis and investigated the relative effects of growing degree-hours >5 °C, soil characteristics and latitude on seed nutrient concentrations. Seed nitrogen, nitrogen:phosphorus ratio and calcium concentration decreased towards northern latitudes, while carbon:nitrogen ratios increased. When taking differences in growing degree-hours and measured soil characteristics into account and only considering the most mature seeds, the latitudinal decline remained particularly significant for seed nitrogen concentration. We argue that the decline in seed nitrogen concentration can be attributed to northward decreasing seed provisioning due to lower soil nitrogen availability or greater investment in clonal reproduction. This pattern may have large implications for the reproductive performance of this forest herb as the degree of seed provisioning ultimately co-determines seedling survival and reproductive success.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号