首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   365篇
  免费   15篇
  国内免费   3篇
  2023年   2篇
  2022年   3篇
  2021年   9篇
  2020年   5篇
  2019年   11篇
  2018年   12篇
  2017年   5篇
  2016年   6篇
  2015年   8篇
  2014年   12篇
  2013年   24篇
  2012年   12篇
  2011年   14篇
  2010年   9篇
  2009年   16篇
  2008年   18篇
  2007年   13篇
  2006年   13篇
  2005年   16篇
  2004年   10篇
  2003年   13篇
  2002年   17篇
  2001年   9篇
  2000年   11篇
  1999年   16篇
  1998年   11篇
  1997年   5篇
  1996年   9篇
  1995年   3篇
  1994年   4篇
  1993年   6篇
  1992年   9篇
  1991年   5篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1985年   9篇
  1984年   7篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1977年   3篇
  1975年   3篇
  1974年   2篇
排序方式: 共有383条查询结果,搜索用时 15 毫秒
281.
The glycoprotein component in rat brain reacting most strongly with Galanthus nivalis agglutinin (GNA) on western blots migrates as an 85-kDa band. GNA identifies mannose-rich oligosaccharides because it is highly specific for terminal alpha-mannose residues. After purification of this 85-kDa glycoprotein band by chromatography on GNA-agarose and preparative gel electrophoresis, binding of other lectins demonstrated the presence of fucose and a trace of galactose, but no sialic acid. Treatment with N-Glycanase or endoglycosidase H produced a 65-kDa band, indicating that it consisted of about one-fourth N-linked oligomannosidic carbohydrate moieties. High-performance anion-exchange chromatography and fluorescence-assisted carbohydrate electrophoresis indicated that the major carbohydrate moiety is a heptasaccharide with the structure Manalpha1-6(Manalpha1-3)Manalpha1-6(Manalpha1-3) Manbeta1-4Glc-NAcbeta1-4GlcNAc (Man5GlcNAc2). Determination of amino acid sequences of peptides produced by endoproteinase digestion demonstrated that this 85-kDa mannose-rich glycoprotein component contained the SHP substrate-1 for phosphotyrosine phosphatases and at least one other member of the signal-regulatory protein (SIRP) family. The unusually high content of oligomannosidic carbohydrate moieties on these receptor-like members of the immunoglobulin superfamily in neural tissue could be of functional significance for intercellular adhesion or signaling.  相似文献   
282.
The activation of extracellular receptor kinase (ERK) is one of the checkpoints to assess the activation of the classical Ras/mitogen-activated protein kinase (MAPK) cascade. Therefore, we tested more than 100 selenium-containing compounds for their ability to activate the MAPK signal pathway. Among them, we found that three selenazoles, 5-chloroacetyl-2-piperidino-1,3-selenazole (CS1), 5-chloroacetyl-2-morpholino-1,3-selenazole (CS2), and 5-chloroacetyl-2-dimethylamino-1,3-selenazole (CS3), induced the phosphorylation of ERK. These compounds also enhanced the phosphorylation of Akt, a signal transducing protein kinase for cell survival; and this phosphorylation was followed by suppression of cell death, thus suggesting that they had anti-apoptotic effects. Moreover, CSs 1-3 induced neurite outgrowth and facilitated the expression of neurofilament-M of PC12 cells, demonstrating that they induced neuronal differentiation of these cells. On the other hand, the CS-induced phosphorylation of MAPK was enhanced by buthionine sulfoximine (BSO), an activator of protein tyrosine phosphatases (PTPs), but inhibited by N-acetyl-l-cysteine (NAC), an inhibitor of receptor tyrosine kinase. These results imply that activation of some receptor tyrosine kinase(s) is involved in the mechanism of action of CSs 1-3. The activation of MAPK by CSs 1-3 was suppressed by U0126, a MEK inhibitor, but not by K252a, an inhibitor of TrkA; AG1478, an antagonist of epidermal growth factor receptor (EGFR); or by pertussis toxin. These results demonstrate that the CS-induced phosphorylation of Akt and MAP kinase (receptor tyrosine kinase(s)-MEK1/2-ERK1/2) cascades was responsible for suppression of apoptosis and facilitation of neuronal differentiation of PC12 cells, respectively. Our results suggest that CSs 1-3 are promising candidates as neuroprotective and/or neurotrophic agents for the treatment of various neurodegenerative neurological disorders.  相似文献   
283.
Metabolically engineered Escherichia coli MEC143 with deletions of the ptsG, manZ, glk, pfkA, and zwf genes converts pentoses such as arabinose and xylose into glucose, with the dephosphorylation of glucose‐6‐phosphate serving as the final step. To determine which phosphatase mediates this conversion, we examined glucose formation from pentoses in strains containing knockouts of six different phosphatases singly and in combination. Deletions of single phosphatases and combinations of multiple phosphatases did not eliminate the accumulation of glucose from xylose or arabinose. Overexpression of one phosphatase, haloacid dehalogenase‐like phosphatase 12 coded by the ybiV gene, increased glucose yield significantly from 0.26 to 0.30 g/g (xylose) and from 0.32 to 0.35 g/g (arabinose). Growing cells under phosphate‐limited steady‐state conditions increased the glucose yield to 0.39 g glucose/g xylose, but did not affect glucose yield from arabinose (0.31 g/g). No single phosphatase is exclusively responsible for the conversion of glucose‐6‐phosphate to glucose in E. coli MEC143. Phosphate‐limited conditions are indeed able to enhance glucose formation in some cases, with this effect likely influenced by the different phosphate demands when E. coli metabolizes different carbon sources.  相似文献   
284.
Choline acetyltransferase (ChAT) appears to exist in multiple forms, three of which can be isolated biochemically as cytosolic (cChAT), ionically-membrane bound (ibChAT) and non-ionic membranous (mChAT). In this study, we first examined whether the quantitative distribution of enzyme protein and enzyme activity was the same. Enzyme activity and ChAT protein distributed similarly: the majority of ChAT activity and protein were found in cChAT followed by mChAT and least activity and amount were in ibChAT. Our second objective was to investigate the effects of calyculin A or okadaic acid on the subcellular distribution of ChAT activity and amount from rat hippocampal formation. Calyculin A and okadaic acid decreased significantly (p < 0.01) cytosolic and membranous ChAT activity; ionically-bound ChAT was not significantly (p > 0.67) different from control. Removal of calyculin A or okadaic acid restored cytosolic ChAT activity (p > 0.9 as compared to control), but not membranous enzyme activity (p < 0.05 as compared to control). The immunoreactive cytosolic ChAT was reduced significantly (p < 0.01) by calyculin A and okadaic acid. Enzyme amount of membranous ChAT was decreased significantly by calyculin A (p < 0.01) and okadaic acid (p < 0.001). Enzyme amount of ionically-bound ChAT was not changed (p > 0.99) by either of these two phosphatase inhibitors. This investigation demonstrates that alterations in ChAT activity of each subfraction parallel changes in enzyme amounts in the same fractions.  相似文献   
285.
Cheburkin  Yu. V.  Knyazeva  T. G.  Peter  S.  Knyazev  Yu. P.  Karelin  M. I.  Shkolnik  M. I.  Evtushenko  V. I.  Hanson  K.  Ullrich  A.  Knyazev  P. G. 《Molecular Biology》2002,36(3):376-384
Hybridization with cDNA arrays was used to obtain expression profiles of 214 protein-tyrosine kinase, protein-tyrosine phosphatase, dual specificity phosphatase, and other genes for kidney carcinomas (KC) and normal kidney tissues of 34 patients and for seven carcinoma cell lines. Computer analysis revealed three clusters of genes coexpressed in KC. The proliferating-cell gene cluster included MET, VIM, MYC, TOP2A, PCNA. The neoangiogenesis and blood-cell gene cluster included LCK, HCK, FGR, MMP9, CSFR1, VEGF, FLT1, and KDR. The cluster corresponding to normal, differentiated kidney cells included ERBB2 (HER2) for receptor protein-tyrosine kinase, several phosphatase genes (PTPRE, PTPRB, DUSP9), and EGF. The results suggested that MET, DUSP9, PCNA, TOP2A, and VIM may serve as diagnostic and prognostic markers in KC. Tubulin and topoisomerase II were assumed to be promising targets for cell proliferation inhibitors in KC.  相似文献   
286.
287.
Phosphoprotein Phosphatase Activities in Alzheimer Disease Brain   总被引:21,自引:4,他引:21  
Abstract: Microtubule-associated protein τ is known to be hyperphosphorylated in Alzheimer disease brain and this abnormal hyperphosphorylation is associated with an inability of τ to promote the assembly of microtubule in the affected neurons. Our previous studies demonstrated that abnormally phosphorylated τ could be dephosphorylated after treatment with alkaline phosphatase, thereby suggesting that the abnormal phosphorylation of τ might in part be the result of a deficiency of the phosphoprotein phosphatase system in patients with Alzheimer disease. In the present study we used 32P-labeled phosphorylase kinase and poly(Glu.Tyr) 4:1 as substrates to measure phosphoprotein phosphatase activities in Alzheimer disease and control brains. The activities of phosphoseryl/ phosphothreonyl-protein phosphatase types 1, 2A, 2B, and 2C and of phosphotyrosyl-protein phosphatase in frontal gray and white matters from 13 Alzheimer brains were determined and compared with those from 12 age-matched control brains. The activities of type 1 phosphatase and phosphotyrosyl phosphatase in gray matter and of type 2A phosphatase in both gray and white matters were significantly lower in Alzheimer disease brains than in controls. These findings suggest that the hyperphosphorylation of τ in Alzheimer disease brain could result from a protein dephosphorylation defect in vivo. The decrease in the phosphatase activities in Alzheimer disease might also be involved in the formation of β-amyloid by augmenting the amyloidogenic pathway processing of β-amyloid precursor protein.  相似文献   
288.
  1. Download : Download high-res image (140KB)
  2. Download : Download full-size image
Highlights
  • •NCMR is crucial for substrate recognition and activity regulation.
  • •MASTL conserves a cryptic C-Lobe in the non-conserved middle region.
  • •MASTL450 containing the cryptic C-lobe is observed in cancer cell lines.
  • •Key phosphorylation sites for MASTL provide an activation model.
  相似文献   
289.
ABSTRACT

A number of interesting features, phenotypes, and potential clinical applications have recently been ascribed to the type 2C family of protein phosphatases. Thus far, 16 different PP2C genes have been identified in the human genome, encoding (by means of alternative splicing) for at least 22 different isozymes. Virtually ever since their discovery, type 2C phosphatases have been predominantly linked to cell growth and to cellular stress signaling. Here, we provide an overview of the involvement of type 2C phosphatases in these two processes, and we show that four of them (PP2Cα, PP2Cβ, ILKAP, and PHLPP) can be expected to function as tumor suppressor proteins, and one as an oncoprotein (PP2Cδ /Wip1). In addition, we demonstrate that in virtually all cases in which they have been linked to the stress response, PP2Cs act as inhibitors of cellular stress signaling. Based on the vast amount of experimental evidence obtained thus far, it therefore seems justified to conclude that type 2C protein phosphatases are important physiological regulators of cell growth and of cellular stress signaling.  相似文献   
290.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号