首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   365篇
  免费   15篇
  国内免费   3篇
  2023年   2篇
  2022年   3篇
  2021年   9篇
  2020年   5篇
  2019年   11篇
  2018年   12篇
  2017年   5篇
  2016年   6篇
  2015年   8篇
  2014年   12篇
  2013年   24篇
  2012年   12篇
  2011年   14篇
  2010年   9篇
  2009年   16篇
  2008年   18篇
  2007年   13篇
  2006年   13篇
  2005年   16篇
  2004年   10篇
  2003年   13篇
  2002年   17篇
  2001年   9篇
  2000年   11篇
  1999年   16篇
  1998年   11篇
  1997年   5篇
  1996年   9篇
  1995年   3篇
  1994年   4篇
  1993年   6篇
  1992年   9篇
  1991年   5篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1985年   9篇
  1984年   7篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1977年   3篇
  1975年   3篇
  1974年   2篇
排序方式: 共有383条查询结果,搜索用时 31 毫秒
251.
Tau is a neuronal microtubule-associated protein. Its hyperphosphorylation plays a critical role in Alzheimer disease (AD). Expression and phosphorylation of tau are regulated developmentally, but its dynamic regulation and the responsible kinases or phosphatases remain elusive. Here, we studied the developmental regulation of tau in rats during development from embryonic day 15 through the age of 24 months. We found that tau expression increased sharply during the embryonic stage and then became relatively stable, whereas tau phosphorylation was much higher in developing brain than in mature brain. However, the extent of tau phosphorylation at seven of the 14 sites studied was much less in developing brain than in AD brain. Tau phosphorylation during development matched the period of active neurite outgrowth in general. Tau phosphorylation at various sites had different topographic distributions. Several tau kinases appeared to regulate tau phosphorylation collectively at overlapping sites, and the decrease of overall tau phosphorylation in adult brain might be due to the higher levels of tau phosphatases in mature brain. These studies provide new insight into the developmental regulation of site-specific tau phosphorylation and identify the likely sites required for the abnormal hyperphosphorylation of tau in AD.  相似文献   
252.
Phorbol 12-myristate 13-acetate (PMA), a stimulator of PKC, was examined for its influence on K+ (86Rb) influx in the frog erythrocyte. PMA, 0.1 μM, was found to accelerate ouabain-sensitive K+ influx, which was suppressed by 73% with 1 mM amiloride, indicating secondary activation of the Na+–K+-pump due to stimulation of Na/H+ exchange. PMA-induced stimulation of the sodium pump was completely inhibited with 1 μM staurosporine and by ~50% with 20 μM chelerythrine. In contrast to Na+–K+-pump, an activity of Cl-dependent K+ transport (K–Cl cotransport, KCC), calculated as the difference between K+ influxes in Cl and NO3 -media, was substantially decreased under the influence of PMA. Staurosporine fully restored the PMA-induced inhibition of KCC, whereas chelerythrine did not exert any influence. Osmotic swelling of the frog erythrocytes was accompanied by approximately twofold stimulation of KCC. Swelling-activated KCC was inhibited by ~50 and ~83% in the presence of PMA and genistein, respectively, but not chelerythrine. Exposure of the frog erythrocytes to 5 mM fluoride (F) also reduced the KCC activity in isotonic and hypotonic media, with maximal suppression of K+ influx in both media being observed upon simultaneous addition of PMA and F. Furosemide and [(dihydronindenyl)oxy] alkanoic acid inhibited the K+ influx in both the media by ~50–60%. The results obtained show both the direct and indirect effects of PMA on the K+ transport in frog erythrocytes and a complicated picture of KCC regulation in frog erythrocytes with involvement of PKC, tyrosine kinase and protein phosphatase.  相似文献   
253.
Previous studies on PTP4A3 mainly focused on tumor metastasis due to the close relationship between the overexpression of lung cancer and metastasis. However, the role of PTP4A3 in the proliferation of tumor still has remained unclear. To investigate the role of PTP4A3 in cell growth of lung cancer, we constructed PTP4A3-siRNA expressing lentivirus and infected human lung cancer H1299 cells, and then examined the inhibitory effect of PTP4A3 in vitro. The levels of PTP4A3 mRNA and protein in H1299 cells decreased after PTP4A3-siRNA lentivirus infection. The growth and colony formation of the infected cells were also inhibited, indicating that PTP4A3 gene is closely associated with the proliferation of H1299 cells. In addition, after PTP4A3 specific siRNA lentivirus infection, it was notable that whilst H1299 cells in G1 phase apparently reduced, both of H1299 cells in G2/M phase and the cell apoptosis increased significantly. This finding indicated the close relationship between PTP4A3 gene and apoptosis in the H1299 cells. These results come to their conclusion that PTP4A3 plays an important role in the growth of lung cancer cells. PTP4A3 may be considered as a valuable target for anti-tumor therapeutic strategies.  相似文献   
254.
The protein phosphatases PP2A and PP1 are major regulators of a variety of cellular processes in yeast and other eukaryotes. Here, we reveal that both enzymes are direct targets of glucose sensing. Addition of glucose to glucose-deprived yeast cells triggered rapid posttranslational activation of both PP2A and PP1. Glucose activation of PP2A is controlled by regulatory subunits Rts1, Cdc55, Rrd1 and Rrd2. It is associated with rapid carboxymethylation of the catalytic subunits, which is necessary but not sufficient for activation. Glucose activation of PP1 was fully dependent on regulatory subunits Reg1 and Shp1. Absence of Gac1, Glc8, Reg2 or Red1 partially reduced activation while Pig1 and Pig2 inhibited activation. Full activation of PP2A and PP1 was also dependent on subunits classically considered to belong to the other phosphatase. PP2A activation was dependent on PP1 subunits Reg1 and Shp1 while PP1 activation was dependent on PP2A subunit Rts1. Rts1 interacted with both Pph21 and Glc7 under different conditions and these interactions were Reg1 dependent. Reg1-Glc7 interaction is responsible for PP1 involvement in the main glucose repression pathway and we show that deletion of Shp1 also causes strong derepression of the invertase gene SUC2. Deletion of the PP2A subunits Pph21 and Pph22, Rrd1 and Rrd2, specifically enhanced the derepression level of SUC2, indicating that PP2A counteracts SUC2 derepression. Interestingly, the effect of the regulatory subunit Rts1 was consistent with its role as a subunit of both PP2A and PP1, affecting derepression and repression of SUC2, respectively. We also show that abolished phosphatase activation, except by reg1Δ, does not completely block Snf1 dephosphorylation after addition of glucose. Finally, we show that glucose activation of the cAMP-PKA (protein kinase A) pathway is required for glucose activation of both PP2A and PP1. Our results provide novel insight into the complex regulatory role of these two major protein phosphatases in glucose regulation.  相似文献   
255.
Plant genome possesses over 100 protein phosphatase (PPase) genes that are key regulators of signal transduction via phosphorylation/dephosphorylation event. Here we report a comprehensive functional analysis of protein serine/threonine, dual-specificity and tyrosine phosphatases using recombinant PPases produced by wheat cell-free protein synthesis system. Eighty-two recombinant PPases were successfully produced using Arabidopsis full-length cDNA as templates. In vitro PPase assay was performed using phosphorylated myelin basic protein as substrate. Among the AtPPases examined, 26 serine/threonine, three dual-specificity and one tyrosine PPases exhibited catalytic activity, including 20 serine/threonine and one dual-specificity PPases that showed in vitro activities for the first time. Our study demonstrates genome-wide biochemical analysis of AtPPases using wheat cell-free system, and provides new information and insights on enzyme activities.

Structured summary of protein interactions

PTP1dephosphorylatesMBP by phosphatase assay (View interaction).AtPP2CdephosphorylatesMBP by phosphatase assay (View interaction).POLTEdephosphorylatesMBP by phosphatase assay (View interaction).TOPP8dephosphorylatesMBP by phosphatase assay (View interaction).HAB1dephosphorylatesMBP by phosphatase assay (View interaction).ABI2dephosphorylatesMBP by phosphatase assay (View interaction).At1g34750dephosphorylatesMBP by phosphatase assay (View interaction).At1g43900dephosphorylatesMBP by phosphatase assay (View interaction).At3g15260dephosphorylatesMBP by phosphatase assay (View interaction).At5g53140dephosphorylatesMBP by phosphatase assay (View interaction).At1g18030dephosphorylatesMBP by phosphatase assay (View interaction).At3g06270dephosphorylatesMBP by phosphatase assay (View interaction).At2g25070dephosphorylatesMBP by phosphatase assay (View interaction).At3g02750dephosphorylatesMBP by phosphatase assay (View interaction).At5g10740dephosphorylatesMBP by phosphatase assay (View interaction).at4g26080dephosphorylatesMBP by phosphatase assay (View interaction).At4g28400dephosphorylatesMBP by phosphatase assay (View interaction).At5g06750dephosphorylatesMBP by phosphatase assay (View interaction).At4g31860dephosphorylatesMBP by phosphatase assay (View interaction).At3g17250dephosphorylatesMBP by phosphatase assay (View interaction).At4g38520dephosphorylatesMBP by phosphatase assay (View interaction).At3g05640dephosphorylatesMBP by phosphatase assay (View interaction).At5g66080dephosphorylatesMBP by phosphatase assay (View interaction).At1g79630dephosphorylatesMBP by phosphatase assay (View interaction).At2g30170dephosphorylatesMBP by phosphatase assay (View interaction).At5g24940dephosphorylatesMBP by phosphatase assay (View interaction).  相似文献   
256.
257.
We investigated the effects of the cellular redox state on nerve growth factor (NGF)-induced neuronal differentiation and its signaling pathways. Treatment of PC12 cells with buthionine sulfoximine (BSO) reduced the levels of GSH, a major cellular reductant, and enhanced NGF-induced neuronal differentiation, activation of AP-1 and the NGF receptor tyrosine kinase, TrkA. Conversely, incubation of the cells with a reductant, N-acetyl-L-cysteine (NAC), inhibited NGF-induced neuronal differentiation and AP-1 activation. Consistent with the suppression, NAC inhibited NGF-induced activation of TrkA, formation of receptor complexes comprising TrkA, Shc, Grb2, and Sos, and activation of phospholipase Cgamma and phosphatidylinositol 3-kinase. Biochemical analysis suggested that the cellular redox state regulates TrkA activity through modulation of protein tyrosine phosphatases (PTPs). Thus, cellular redox state regulates signaling pathway of NGF through PTPs, and then modulates neuronal differentiation.  相似文献   
258.
The PRL phosphatases, which constitute a subfamily of the protein tyrosine phosphatases (PTPs), are implicated in oncogenic and metastatic processes. Here, we report the crystal structure of human PRL-1 determined at 2.7A resolution. The crystal structure reveals the shallow active-site pocket with highly hydrophobic character. A structural comparison with the previously determined NMR structure of PRL-3 exhibits significant differences in the active-site region. In the PRL-1 structure, a sulfate ion is bound to the active-site, providing stabilizing interactions to maintain the canonically found active conformation of PTPs, whereas the NMR structure exhibits an open conformation of the active-site. We also found that PRL-1 forms a trimer in the crystal and the trimer exists in the membrane fraction of cells, suggesting the possible biological regulation of PRL-1 activity by oligomerization. The detailed structural information on the active enzyme conformation and regulation of PRL-1 provides the structural basis for the development of potential inhibitors of PRL enzymes.  相似文献   
259.
Prolidase [EC 3.4.13.9] is a ubiquitously distributed imidodipeptidase that catalyzes the hydrolysis of C-terminal proline-containing dipeptides. The enzyme plays an important role in the recycling of proline for collagen synthesis and cell growth. Although, the increase in the enzyme activity is correlated with increased rate of collagen turnover, the mechanism by which prolidase is regulated remain largely unknown. In the present study we found that phosphorylation of fibroblast's prolidase may be an underlying mechanism for up regulation of the enzyme activity. Supporting evidence comes from the following observations: (1) immunoprecipitated prolidase was detected as a phosphotyrosine protein as shown by western immunoblot analysis, (2) tyrosine kinase inhibitor – erbstatin induced (in a dose dependent manner) a decrease in prolidase activity in cultured human skin fibroblasts, (3) anti-phosphotyrosine antibody reduced and phosphotyrosine phosphatase 1B antibody (anti-PTP 1B) increased (in a dose dependent manner) the prolidase activity in extract of fibroblast's homogenate, (4) decrease in prolidase activity from collagenase treated or serum starved fibroblasts can be partially prevented by incubating fibroblast's homogenate extract with anti-PTP 1B antibody. These results provide evidence that prolidase is phosphotyrosine enzyme and suggest that the activity of prolidase may be up regulated by the enzyme phosphorylation.  相似文献   
260.
The tyrosine phosphatase SHP-2 has been implicated in a variety of signaling pathways, including those mediated by neurotrophins in neurons. To examine the role of SHP-2 in the development of sympathetic neurons, we inhibited the function of SHP-2 in transgenic mice by overexpressing a catalytically inactive SHP-2 mutant under the control of the human dopamine beta-hydroxylase promoter. Expression of mutant SHP-2 did not influence the survival, axon initiation, or pathfinding abilities of the sympathetic neurons. However, mutant SHP-2 expression resulted in an overproduction of sympathetic fibers in sympathetic target organs. This was due to interference with SHP-2 function, as overexpression of wild type SHP-2 had no such effect. In vitro, NGF-dependent neurite growth was inhibited in neurons expressing mutant SHP-2 but not in those expressing wild type SHP-2. Mutant (but not wt) SHP-2 expression also inhibited NGF-stimulated ERK activation. The NGF-dependent survival pathway was less affected than the neurite growth pathway. Our results suggest that NGF-regulated axon growth signals, and to a lesser degree survival signals, are mediated through a SHP-2-dependent pathway in sympathetic neurons. The increased sympathetic innervation in target tissues of neurons expressing mutant SHP-2 may result from interference with normal "stop" signals dependent on signaling by gradients of NGF.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号