首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95774篇
  免费   20372篇
  国内免费   3303篇
  2024年   66篇
  2023年   707篇
  2022年   1268篇
  2021年   1903篇
  2020年   3993篇
  2019年   5827篇
  2018年   6043篇
  2017年   5534篇
  2016年   5413篇
  2015年   5891篇
  2014年   6705篇
  2013年   8039篇
  2012年   5627篇
  2011年   6525篇
  2010年   5435篇
  2009年   4945篇
  2008年   5318篇
  2007年   4877篇
  2006年   4563篇
  2005年   4259篇
  2004年   3661篇
  2003年   3435篇
  2002年   3111篇
  2001年   2163篇
  2000年   1566篇
  1999年   1505篇
  1998年   1286篇
  1997年   1080篇
  1996年   865篇
  1995年   965篇
  1994年   890篇
  1993年   798篇
  1992年   703篇
  1991年   493篇
  1990年   404篇
  1989年   374篇
  1988年   392篇
  1987年   344篇
  1986年   288篇
  1985年   340篇
  1984年   460篇
  1983年   303篇
  1982年   304篇
  1981年   190篇
  1980年   174篇
  1979年   152篇
  1978年   88篇
  1977年   48篇
  1976年   44篇
  1975年   28篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
21.
Many proteins that can assemble into higher order structures termed amyloids can also concentrate into cytoplasmic inclusions via liquid–liquid phase separation. Here, we study the assembly of human Golgi-Associated plant Pathogenesis Related protein 1 (GAPR-1), an amyloidogenic protein of the Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-related 1 proteins (CAP) protein superfamily, into cytosolic inclusions in Saccharomyces cerevisiae. Overexpression of GAPR-1-GFP results in the formation GAPR-1 oligomers and fluorescent inclusions in yeast cytosol. These cytosolic inclusions are dynamic and reversible organelles that gradually increase during time of overexpression and decrease after promoter shut-off. Inclusion formation is, however, a regulated process that is influenced by factors other than protein expression levels. We identified N-myristoylation of GAPR-1 as an important determinant at early stages of inclusion formation. In addition, mutations in the conserved metal-binding site (His54 and His103) enhanced inclusion formation, suggesting that these residues prevent uncontrolled protein sequestration. In agreement with this, we find that addition of Zn2+ metal ions enhances inclusion formation. Furthermore, Zn2+ reduces GAPR-1 protein degradation, which indicates stabilization of GAPR-1 in inclusions. We propose that the properties underlying both the amyloidogenic properties and the reversible sequestration of GAPR-1 into inclusions play a role in the biological function of GAPR-1 and other CAP family members.  相似文献   
22.
Kinetic parameters of 3-(3, 4-dichlorophenyl)-1, 1-dimethyl urea (DCMU)-induced inhibition of electron transport in chloroplast thylakoids isolated from Phaseolus vulgaris L. cv. Oregon 1604 were determined from analysis of a convergent, parallel electrical circuit. Through this analogue, the apparent affinity of the purported binding site for DCMU (K1) and the relative amount of DCMU-insensitive electron transport (vmax1/vo) were obtained using a reiterative non-linear least squares curve-fitting procedure. Exposure of thylakoids to heat caused a gradual increase in K1 (or decrease in the affinity of the thylakoid for DCMU) with an apparent activation energy of 134 kJ mol−1. Tryptic susceptibility of a protein region regulating K1 also decreased gradually with exposure to 45°C, suggesting that the heat-induced increase in K1 might be due to a protein conformational change. On the other hand, thylakoid exposure to 45°C resulted in a rapid (<5 min) irreversible increase in vmaxI/vo, which was also the apparent result of a conformational change in a region of the protein which regulates this function. These results are suggestive of the existence of differential thermal sensitivities of proteins within the thylakoids and, perhaps, of different regions within a single membrane protein.  相似文献   
23.
We examined whether actin filaments are involved in the cAMP-dependent activation of a high affinity sodium/glucose cotransporter (SGLT1) using epithelial expression systems. The expression of enhanced green fluorescent protein-tagged SGLT1 (EGFP-SGLT1) in Madin-Darby canine kidney (MDCK) cells was revealed by Western blotting and confocal laser microscopy. 8-Br-cAMP, a membrane permeable cAMP analog, enhanced [14C]-α-methyl glucopyranoside ([14C]-AMG) uptake. Both basal and 8-Br-cAMP-elicited [14C]-AMG uptakes were inhibited by N-(2{[3-(4-bromophenyl)-2-propenyl]-amino}-ethyl)-5-isoquinolinesulfonamide (H-89), a protein kinase A inhibitor, and cytochalasin D, an actin filament formation inhibitor. Furthermore, cytochalasin D inhibited the distribution of EGFP-SGLT1 at the apical surface. These results suggest that the EGFP-SGLT1 protein is functionally expressed in the apical membrane of MDCK cells, and is up-regulated by a cAMP-dependent pathway requiring intact actin filaments.  相似文献   
24.
The aim of this article is to quantify the drivers for the changes in raw material consumption (domestic material consumption expressed in the form of all materials extracted and used in the production phase) in terms of technology, which refers to the concept of sustainable production; the product structure of final demand, which refers to the concept of sustainable consumption; and the volume of final demand, which is related to economic growth. We also aim to determine to what extent the technological development and a shift in product structure of the final demand compensate for the growth in final consumption volume. Therefore, we apply structural decomposition analysis (SDA) to the change in raw material consumption (RMC) of the Czech Republic between 2000 and 2007. To present the study in a broader context, we also show other material flow indicators for the Czech Republic for 2000 and 2007. Our findings of SDA show that final demand structure has a very limited effect on the change in material flows. The rapid change in final demand volume was not compensated for crude oil, metal ores, construction materials, food crops, and timber. For the material category of non‐iron metal ores, even the change in technology contributes to an increase in material flows. The largest relative increases are reported for non‐iron metal ores (38%) and construction materials (30%). The main changes in material flows related to the Czech Republic are driven by exports and enabled by imports, the main source of these increased material flows. This emphasizes the increasing role of international trade.  相似文献   
25.
Rechargeable graphite dual‐ion batteries (GDIBs) have attracted the attention of electrochemists and material scientists in recent years due to their low cost and high‐performance metrics, such as high power density (≈3–175 kW kg?1), energy efficiency (≈80–90%), long cycling life, and high energy density (up to 200 Wh kg?1), suited for grid‐level stationary storage of electricity. The key feature of GDIBs is the exploitation of the reversible oxidation of the graphite network with concomitant and highly efficient intercalation/deintercalation of bulky anionic species between graphene layers. In this review, historical and current research aspects of GDIBs are discussed, along with key challenges in their development and practical deployment. Specific emphasis is given to the operational mechanism of GDIBs and to unbiased and correct reporting of theoretical cell‐level energy densities.  相似文献   
26.
A new brain protein is described which forms an insoluble complex with tubulin, with concomitant stoichiometric hydrolysis of GTP. The complex contains a maximum of one tubulin-binding protein (MW 52,500) per two tubulin dimers. The tubulin-binding protein (TBP) does not compete with colchicine, but in the presence of microtubule-associated proteins tubulin appeared less accessible to it. Proteins such as TBP might sequester tubulin and thereby function either to inhibit indiscriminate polymerization, or to promote ordered nucleation by maintaining high local concentrations.  相似文献   
27.
The association between the red macroalga Jania adhaerens J. V. Lamour. and the sponge Haliclona caerulea is the most successful life‐form between 2 and 4 m depth in Mazatlán Bay (Mexican Pacific). J. adhaerens colonizes the rocky intertidal area and penetrates into deeper areas only when it lives in association with H. caerulea. The aposymbiotic form of the sponge has not been reported in the bay. To understand the ecological success of this association, we examined the capacity of J. adhaerens to acclimate in Mazatlán Bay using transplant experiments. The transplanted aposymbiotic J. adhaerens did not survive the first 2 weeks; however, J. adhaerens when living in association with H. caerulea, acclimated easily to depth, showing no sign of mortality during the 103 d of the experiment. We conclude that the ability of J. adhaerens to colonize in deeper areas in this hydrodynamic environment may in part rely on the protection provided by the sponge to the algal canopy. Both species contribute to the shape of the associated form. Nevertheless, the morphological variation in the association appears to be dominated by the variation in J. adhaerens canopy to regulate pigment self‐shading under light‐limited conditions and/or tissue resistance under high hydrodynamics. Consequently, our results are consistent with light as the abiotic controlling factor, which regulates the lower depth distribution of the association in Mazatlán Bay, through limiting the growth rate of J. adhaerens. Hydrodynamics may determine the upper limit of the association by imposing high mass losses.  相似文献   
28.
A key intermediate in translocation is an ‘unlocked state’ of the pre‐translocation ribosome in which the P‐site tRNA adopts the P/E hybrid state, the L1 stalk domain closes and ribosomal subunits adopt a ratcheted configuration. Here, through two‐ and three‐colour smFRET imaging from multiple structural perspectives, EF‐G is shown to accelerate structural and kinetic pathways in the ribosome, leading to this transition. The EF‐G‐bound ribosome remains highly dynamic in nature, wherein, the unlocked state is transiently and reversibly formed. The P/E hybrid state is energetically favoured, but exchange with the classical P/P configuration persists; the L1 stalk adopts a fast dynamic mode characterized by rapid cycles of closure and opening. These data support a model in which P/E hybrid state formation, L1 stalk closure and subunit ratcheting are loosely coupled, independent processes that must converge to achieve the unlocked state. The highly dynamic nature of these motions, and their sensitivity to conformational and compositional changes in the ribosome, suggests that regulating the formation of this intermediate may present an effective avenue for translational control.  相似文献   
29.
30.
G protein coupled receptors signal through G proteins or arrestins. A long-standing mystery in the field is why vertebrates have two non-visual arrestins, arrestin-2 and arrestin-3. These isoforms are ~75% identical and 85% similar; each binds numerous receptors, and appear to have many redundant functions, as demonstrated by studies of knockout mice. We previously showed that arrestin-3 can be activated by inositol-hexakisphosphate (IP6). IP6 interacts with the receptor-binding surface of arrestin-3, induces arrestin-3 oligomerization, and this oligomer stabilizes the active conformation of arrestin-3. Here, we compared the impact of IP6 on oligomerization and conformational equilibrium of the highly homologous arrestin-2 and arrestin-3 and found that these two isoforms are regulated differently. In the presence of IP6, arrestin-2 forms “infinite” chains, where each promoter remains in the basal conformation. In contrast, full length and truncated arrestin-3 form trimers and higher-order oligomers in the presence of IP6; we showed previously that trimeric state induces arrestin-3 activation (Chen et al., 2017). Thus, in response to IP6, the two non-visual arrestins oligomerize in different ways in distinct conformations. We identified an insertion of eight residues that is conserved across arrestin-2 homologs, but absent in arrestin-3 that likely accounts for the differences in the IP6 effect. Because IP6 is ubiquitously present in cells, this suggests physiological consequences, including differences in arrestin-2/3 trafficking and JNK3 activation. The functional differences between two non-visual arrestins are in part determined by distinct modes of their oligomerization. The mode of oligomerization might regulate the function of other signaling proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号