首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12538篇
  免费   713篇
  国内免费   519篇
  13770篇
  2023年   148篇
  2022年   190篇
  2021年   287篇
  2020年   259篇
  2019年   288篇
  2018年   353篇
  2017年   258篇
  2016年   248篇
  2015年   325篇
  2014年   508篇
  2013年   756篇
  2012年   405篇
  2011年   458篇
  2010年   418篇
  2009年   542篇
  2008年   663篇
  2007年   611篇
  2006年   661篇
  2005年   563篇
  2004年   535篇
  2003年   484篇
  2002年   463篇
  2001年   323篇
  2000年   309篇
  1999年   308篇
  1998年   297篇
  1997年   264篇
  1996年   255篇
  1995年   258篇
  1994年   227篇
  1993年   248篇
  1992年   202篇
  1991年   189篇
  1990年   188篇
  1989年   154篇
  1988年   139篇
  1987年   121篇
  1986年   94篇
  1985年   99篇
  1984年   142篇
  1983年   82篇
  1982年   89篇
  1981年   83篇
  1980年   71篇
  1979年   59篇
  1978年   45篇
  1977年   27篇
  1976年   25篇
  1975年   12篇
  1973年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Pan YX  Ren AJ  Zheng J  Rong WF  Chen H  Yan XH  Wu C  Yuan WJ  Lin L 《Life sciences》2007,81(13):1042-1049
Hypoxic preconditioning (HPC) has been well demonstrated to have potent protective effects in many cell types; however, the mechanisms responsible for this phenomenon are not fully understood. Recently, glucose-regulated protein 78 (GRP78), an inducible molecular chaperon, was indicated to be associated with ischemic preconditioning. We hypothesized that HPC protects cardiomyocytes against hypoxia by inducing GRP78 in cultured neonatal rat cardiomyocytes. HPC was induced by exposing cardiomyocytes to brief hypoxia (1% O(2), 30 min) followed by reoxygenation. GRP78 was expressed constitutively in cultured cardiomyocytes and its expression was enhanced at 12 h, peaked at 24 h (207.3+/-23.6% of the baseline), and was sustained for up to 72 h after HPC. Twenty-four hours after HPC, the myocytes were subjected to prolonged hypoxia (1% O(2), 12 h). The lactic dehydrogenase (LDH) release and malondialdehyde (MDA) content were reduced, while cell viability and superoxide dismutase (SOD) activity were increased in the preconditioned cells compared with the non-HPC cells. The GRP78 protein level was higher in cells exposed to both HPC and hypoxia than in the cells exposed to HPC alone or hypoxia alone. Heat shock protein 70 (HSP70) was induced in parallel by late HPC. Transfection of GRP78 antisense oligonucleotides blocked GRP78 expression but not HSP70, resulting in attenuated cardioprotection afforded by late HPC. Furthermore, inducing GRP78 by gene transfer protected cardiomyocytes from hypoxic injury. These findings demonstrate that the induction of GRP78 partially mediates the late HPC, suggesting that GRP78 is a novel mechanism responsible for the late cytoprotection of HPC.  相似文献   
992.
Mechanisms of HSP72 release   总被引:1,自引:0,他引:1  
Currently two mechanisms are recognized by which heat shock proteins (HSP) are released from cells; a passive release mechanism, including necrotic cell death, severe blunt trauma, surgery and following infection with lytic viruses, and an active release mechanism which involves the non classical protein release pathway. HSPs are released both as free HSP and within exosomes. This review covers recent findings on the mechanism by which stress induces the release of HSP72 into the circulation and the biological significance of circulating HSP72 to host defense against disease.  相似文献   
993.
Moderate physical activity when performed on a regular basis presents a number of benefits to the whole organism, especially regarding immune system function, such as augmenting resistance to infections and to cancer growth. Although glutamine production by active muscle cells as well as neuroendocrine alterations mediated by the chronic adaptation to exercise may play a role, the entire mechanism by which exercise makes the immune system aware of challenges remains mostly uncovered. This is particularly true for the effects of an acute exercise session on immune function. In this work, circulating monocytes/macrophages from sedentary rats submitted to an acute (1 h) swimming session were tested for the ability of phagocytosing zymosan particles, phorbol myristate acetate (PMA)-induced hydrogen peroxide production, nitric oxide (NO) release (assessed by nitrate and nitrite production) and the expression of NO synthases (NOS-1, NOS-2 and NOS-3). The results showed that an exercise bout induced a 2.4-fold rise in macrophage phagocytic capacity (p = 0.0041), a 9.6-fold elevation in PMA-induced hydrogen peroxide release into the incubation media (1-h, p = 0.0022) and a 95.5%-augmentation in nitrite basal production (1-h incubation; p = 0.0220), which was associated with a marked expression of NOS-2 (the inducible NOS isoform; p = 0.0319), but not in other NOS gene products. Although NOS-2 expression is nuclear factor-kappaB (NF-kappaB)-dependent, no systemic oxidative stress was found, as inferred from the data of plasma TBARS and glutathione disulphide (GSSG) to glutathione (GSH) ratio in circulating blood erythrocytes which remained constant after the acute exercise. Also, no stressful situation seemed to be faced by monocytes/macrophages, since the expression of the 70-kDa heat shock protein (HSP70) remained unchanged. We conclude that NF-kappaB-dependent induction of NOS-2 and macrophage activation must be related to local factor(s) produced in the surroundings of monocytes/macrophages.  相似文献   
994.
995.
996.
997.
998.
Alkaline phosphatase (AP) isozymes are surfactant-associated proteins (SPs). Since several different AP isozymes have been detected in the pneumocytes of lung cancer patients, we attempted to identify the relationship between pulmonary surfactant aggregate subtypes and AP isozymes. Pulmonary surfactant aggregates were isolated from carcinoma and non-carcinoma tissues of patients with non-small cell carcinoma of the lung. Upon analysis, ultraheavy, heavy, and light surfactant aggregates were detected in the non-carcinoma tissues, but no ultraheavy surfactant aggregates were found in the carcinoma tissues. Surfactant-associated protein A (SP-A) was detected as two bands (a 27-kDa band and a 54-kDa band) in the ultraheavy, heavy, and light surfactant aggregates found in the non-carcinoma tissues. Although both SP-A bands were detected in the heavy and light surfactant aggregates from adenocarcinoma tissues, the 54-kDa band was not detected in squamous cell carcinoma tissues. Liver AP (LAP) was detected in the heavy and light surfactant aggregates from both non-carcinoma and squamous carcinoma tissues, but not in heavy surfactant aggregates from adenocarcinoma tissues. A larger amount of bone type AP (BAP) was found in light surfactant aggregate fractions from squamous cell carcinomas than those from adenocarcinoma tissues or non-carcinoma tissues from patients with either type of cancer. LAP, BAP, and SP-A were identified immunohistochemically in type II pneumocytes from non-carcinoma tissues and adenocarcinoma cells, but no distinct SP-A staining was observed in squamous cell carcinoma tissues. The present study has thus revealed several differences in pulmonary surfactant aggregates and AP isozymes between adenocarcinoma tissue and squamous cell carcinoma tissue.  相似文献   
999.
The outer membrane proteins TolC and EefC from Enterobacter aerogenes are involved in multidrug resistance as part of two resistance-nodulation-division efflux systems. To gain more understanding in the molecular mechanism underlying drug efflux, we have undertaken an electrophysiological characterization of the channel properties of these two proteins. TolC and EefC were purified in their native trimeric form and then reconstituted in proteoliposomes for patch-clamp experiments and in planar lipid bilayers. Both proteins generated a small single channel conductance of about 80 pS in 0.5 M KCl, indicating a common gated structure. The resultant pores were stable, and no voltage-dependent openings or closures were observed. EefC has a low ionic selectivity (PK/PCl = ∼ 3), whereas TolC is more selective to cations (PK/PCl = ∼ 30). This may provide a possible explanation for the difference in drug selectivity between the AcrAB-TolC and EefABC efflux systems observed in vivo. The pore-forming activity of both TolC and EefC was severely inhibited by divalent cations entering from the extracellular side. Another characteristic of the TolC and EefC channels was the systematic closure induced by acidic pH. These results are discussed in respect to the physiological functions and structural models of TolC and EefC.  相似文献   
1000.
The genomes of eleven Gram-positive bacteria that are important for human health and the food industry, nine low G + C lactic acid bacteria and two high G + C Gram-positive organisms, were analyzed for their complement of genes encoding transport proteins. Thirteen to 18% of their genes encode transport proteins, larger percentages than observed for most other bacteria. All of these bacteria possess channel proteins, some of which probably function to relieve osmotic stress. Amino acid uptake systems predominate over sugar and peptide cation symporters, and of the sugar uptake porters, those specific for oligosaccharides and glycosides often outnumber those for free sugars. About 10% of the total transport proteins are constituents of putative multidrug efflux pumps with Major Facilitator Superfamily (MFS)-type pumps (55%) being more prevalent than ATP-binding cassette (ABC)-type pumps (33%), which, however, usually greatly outnumber all other types. An exception to this generalization is Streptococcus thermophilus with 54% of its drug efflux pumps belonging to the ABC superfamily and 23% belonging each to the Multidrug/Oligosaccharide/Polysaccharide (MOP) superfamily and the MFS. These bacteria also display peptide efflux pumps that may function in intercellular signalling, and macromolecular efflux pumps, many of predictable specificities. Most of the bacteria analyzed have no pmf-coupled or transmembrane flow electron carriers. The one exception is Brevibacterium linens, which in addition to these carriers, also has transporters of several families not represented in the other ten bacteria examined. Comparisons with the genomes of organisms from other bacterial kingdoms revealed that lactic acid bacteria possess distinctive proportions of recognized transporter types (e.g., more porters specific for glycosides than reducing sugars). Some homologues of transporters identified had previously been identified only in Gram-negative bacteria or in eukaryotes. Our studies reveal unique characteristics of the lactic acid bacteria such as the universal presence of genes encoding mechanosensitive channels, competence systems and large numbers of sugar transporters of the phosphotransferase system. The analyses lead to important physiological predictions regarding the preferred signalling and metabolic activities of these industrially important bacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号