首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   3篇
  国内免费   2篇
  142篇
  2023年   3篇
  2022年   5篇
  2021年   3篇
  2020年   2篇
  2019年   7篇
  2018年   7篇
  2017年   3篇
  2016年   6篇
  2015年   8篇
  2014年   11篇
  2013年   9篇
  2012年   7篇
  2011年   5篇
  2010年   8篇
  2009年   6篇
  2008年   4篇
  2007年   9篇
  2006年   3篇
  2005年   6篇
  2004年   3篇
  2003年   1篇
  2002年   7篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1995年   3篇
  1993年   1篇
  1990年   1篇
排序方式: 共有142条查询结果,搜索用时 0 毫秒
31.
32.
Reelin is a secreted glycoprotein essential for normal brain development and function. In the extracellular milieu, Reelin is subject to specific cleavage at two (N-t and C-t) sites. The N-t cleavage of Reelin is implicated in psychiatric and Alzheimer’s diseases, but the molecular mechanism and physiological significance of this cleavage are not completely understood. Particularly, whether the N-t cleavage affects the signaling activity of Reelin remains controversial.Here, we show that the protease in charge of the N-t cleavage of Reelin requires the activity of certain proprotein convertase family for maturation and has strong affinity for heparin. By taking advantage of these observations, we for the first time succeeded in obtaining “Uncleaved” and “Completely Cleaved” Reelin proteins. The N-t cleavage splits Reelin into two distinct fragments and virtually abolishes its signaling activity. These findings provide an important biochemical basis for the function of Reelin proteolysis in brain development and function.  相似文献   
33.
34.
α-Dystroglycan (α-DG) plays crucial roles in maintaining the stability of cells. We demonstrated previously that the N-terminal domain of α-DG (α-DG-N) is secreted by cultured cells into the culture medium. In the present study, to clarify its function in vivo, we generated a monoclonal antibody against α-DG-N and investigated the secretion of α-DG-N in human cerebrospinal fluid (CSF). Interestingly, we found that a considerable amount of α-DG-N was present in CSF. α-DG-N in CSF was a sialylated glycoprotein with both N- and O-linked glycan. These observations suggest that secreted α-DG-N may be transported via CSF and have yet unidentified effects on the nervous system.  相似文献   
35.
Proprotein convertase subtilisin-like/kexin type 9 (PCSK9) regulates LDL cholesterol levels by inhibiting LDL receptor (LDLr)-mediated cellular LDL uptake. We have identified a fragment antigen-binding (Fab) 1D05 which binds PCSK9 with nanomolar affinity. The fully human antibody 1D05-IgG2 completely blocks the inhibitory effects of wild-type PCSK9 and two gain-of-function human PCSK9 mutants, S127R and D374Y. The crystal structure of 1D05-Fab bound to PCSK9 reveals that 1D05-Fab binds to an epitope on the PCSK9 catalytic domain which includes the entire LDLr EGF(A) binding site. Notably, the 1D05-Fab CDR-H3 and CDR-H2 loops structurally mimic the EGF(A) domain of LDLr. In a transgenic mouse model (CETP/LDLr-hemi), in which plasma lipid and PCSK9 profiles are comparable to those of humans, 1D05-IgG2 reduces plasma LDL cholesterol to 40% and raises hepatic LDLr protein levels approximately fivefold. Similarly, in healthy rhesus monkeys, 1D05-IgG2 effectively reduced LDL cholesterol 20%-50% for over 2 weeks, despite its relatively short terminal half-life (t(1/2) = 3.2 days). Importantly, the decrease in circulating LDL cholesterol corresponds closely to the reduction in free PCSK9 levels. Together these results clearly demonstrate that the LDL-lowering effect of the neutralizing anti-PCSK9 1D05-IgG2 antibody is mediated by reducing the amount of PCSK9 that can bind to the LDLr.  相似文献   
36.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is associated with autosomal dominant hypercholesterolemia, a state of elevated levels of LDL (low-density lipoprotein) cholesterol. Autosomal dominant hypercholesterolemia can result in severe implications such as stroke and coronary heart disease. The inhibition of PCSK9 function by therapeutic antibodies that block interaction of PCSK9 with the epidermal growth factor-like repeat A domain of LDL receptor (LDLR) was shown to successfully lower LDL cholesterol levels in clinical studies. Here we present data on the identification, structural and biophysical characterization and in vitro and in vivo pharmacology of a PCSK9 antibody (mAb1). The X-ray structure shows that mAb1 binds the module 1 of the C-terminal domain (CTD) of PCSK9. It blocks access to an area bearing several naturally occurring gain-of-function and loss-of-function mutations. Although the antibody does not inhibit binding of PCSK9 to epidermal growth factor-like repeat A, it partially reverses PCSK9-induced reduction of the LDLR and LDL cholesterol uptake in a cellular assay. mAb1 is also effective in lowering serum levels of LDL cholesterol in cynomolgus monkeys in vivo. Complete loss of PCSK9 is associated with insufficient liver regeneration and increased risk of hepatitis C infections. Blocking of the CTD is sufficient to partially inhibit PCSK9 function. Antibodies binding the CTD of PCSK9 may thus be advantageous in patients that do not tolerate complete inhibition of PCSK9.  相似文献   
37.
LDL cholesterol (LDL-C) contributes to coronary heart disease. Proprotein convertase subtilisin/kexin type 9 (PCSK9) increases LDL-C by inhibiting LDL-C clearance. The therapeutic potential for PCSK9 inhibitors is highlighted by the fact that PCSK9 loss-of-function carriers exhibit 15–30% lower circulating LDL-C and a disproportionately lower risk (47–88%) of experiencing a cardiovascular event. Here, we utilized pcsk9−/− mice and an anti-PCSK9 antibody to study the role of the LDL receptor (LDLR) and ApoE in PCSK9-mediated regulation of plasma cholesterol and atherosclerotic lesion development. We found that circulating cholesterol and atherosclerotic lesions were minimally modified in pcsk9−/− mice on either an LDLR- or ApoE-deficient background. Acute administration of an anti-PCSK9 antibody did not reduce circulating cholesterol in an ApoE-deficient background, but did reduce circulating cholesterol (−45%) and TGs (−36%) in APOE*3Leiden.cholesteryl ester transfer protein (CETP) mice, which contain mouse ApoE, human mutant APOE3*Leiden, and a functional LDLR. Chronic anti-PCSK9 antibody treatment in APOE*3Leiden.CETP mice resulted in a significant reduction in atherosclerotic lesion area (−91%) and reduced lesion complexity. Taken together, these results indicate that both LDLR and ApoE are required for PCSK9 inhibitor-mediated reductions in atherosclerosis, as both are needed to increase hepatic LDLR expression.  相似文献   
38.
39.
Atherosclerosis (AS) is the main aetiology of coronary heart disease, cerebral infarction and peripheral vascular disease in humans. Long-noncoding RNA (LincRNA)-p21 has been reported to participate in the development of AS. Therefore, this study was designed to investigate the mechanism of LincRNA-p21 on suppressing the development of AS. We fed ApoE−/− mice with a high-fat diet to induce an AS mouse model where the lesion area of AS and the extent of lipid deposition were measured. The binding of LincRNA-p21 and miR-221 or miR-221 and SIRT1 was measured using a dual luciferase reporter gene assay and RIP. Following loss- and gain- function assays, CCK8, EdU, Transwell assay and scratch test were performed to determine the biological processes of human aortic endothelial cells (HAECs). miR-221 was highly expressed while SIRT1 was poorly expressed in AS. LincRNA-p21 acted as a sponge for miR-221. miR-221 targeted and negatively regulated the expression of SIRT1. LincRNA-p21 promoted the deacetylation of Pcsk9 by SIRT1 by competitively binding to miR-221, whereby promoting HAEC proliferation, migration and tube formation. In conclusion, LincRNA-p21 acted as a molecular sponge for miR-221 to promote deacetylation of the promoter region of Pcsk9 by SIRT1, therefore preventing the development of AS.  相似文献   
40.
The human immune system can directly lyse invading micro‐organisms and aberrant host cells by generating pores in the cell envelope, called membrane attack complexes (MACs). Recent studies using single‐particle cryoelectron microscopy have revealed that the MAC is an asymmetric, flexible pore and have provided a structural basis on how the MAC ruptures single lipid membranes. Despite these insights, it remains unclear how the MAC ruptures the composite cell envelope of Gram‐negative bacteria. Recent functional studies on Gram‐negative bacteria elucidate that local assembly of MAC pores by surface‐bound C5 convertase enzymes is essential to stably insert these pores into the bacterial outer membrane (OM). These convertase‐generated MAC pores can subsequently efficiently damage the bacterial inner membrane (IM), which is essential for bacterial killing. This review summarizes these recent insights of MAC assembly and discusses how MAC pores kill Gram‐negative bacteria. Furthermore, this review elaborates on how MAC‐dependent OM damage could lead to IM destabilization, which is currently not well understood. A better understanding on how MAC pores kill bacteria could facilitate the future development of novel strategies to treat infections with Gram‐negative bacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号