首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5379篇
  免费   785篇
  国内免费   317篇
  2024年   32篇
  2023年   89篇
  2022年   123篇
  2021年   117篇
  2020年   245篇
  2019年   289篇
  2018年   298篇
  2017年   232篇
  2016年   257篇
  2015年   241篇
  2014年   271篇
  2013年   418篇
  2012年   159篇
  2011年   217篇
  2010年   156篇
  2009年   174篇
  2008年   228篇
  2007年   226篇
  2006年   203篇
  2005年   215篇
  2004年   174篇
  2003年   183篇
  2002年   188篇
  2001年   128篇
  2000年   111篇
  1999年   129篇
  1998年   112篇
  1997年   103篇
  1996年   76篇
  1995年   91篇
  1994年   76篇
  1993年   86篇
  1992年   93篇
  1991年   83篇
  1990年   72篇
  1989年   63篇
  1988年   72篇
  1987年   61篇
  1986年   38篇
  1985年   71篇
  1984年   69篇
  1983年   38篇
  1982年   40篇
  1981年   37篇
  1980年   26篇
  1979年   20篇
  1978年   18篇
  1977年   10篇
  1976年   6篇
  1974年   9篇
排序方式: 共有6481条查询结果,搜索用时 18 毫秒
891.
Lucilia sericata larvae are used in maggot debridement therapy, a traditional wound healing approach that has recently been approved for the treatment of chronic wounds. Maggot excretion products (MEP) contain many different proteases that promote disinfection, debridement and the acceleration of wound healing, e.g. by activating the host contact phase/intrinsic pathway of coagulation. In order to characterise relevant procoagulant proteases, we analysed MEP and identified a chymotrypsin-like serine protease with similarities to Jonah proteases from Drosophila melanogaster and a chymotrypsin from Lucilia cuprina. A recombinant form of the L. sericata Jonah chymotrypsin was produced in Escherichia coli. The activated enzyme (Jonahm) had a pH optimum of 8.0 and a temperature optimum of 37 °C, based on the cleavage of the chromogenic peptide s-7388 and casein. Jonahm reduced the clotting time of human plasma even in the absence of the endogenous protease kallikrein, factor XI or factor XII and digested the extracellular matrix proteins fibronectin, laminin and collagen IV, suggesting a potential mechanism of wound debridement. Based on these characteristics, the novel L. sericata chymotrypsin-like serine protease appears to be an ideal candidate for the development of topical drugs for wound healing applications.  相似文献   
892.
Lactic acid is an important platform chemical for producing polylactic acid (PLA) and other value-added products. It is naturally produced by a wide spectrum of microbes including bacteria, yeast and filamentous fungi. In general, bacteria ferment C5 and C6 sugars to lactic acid by either homo- or hetero-fermentative mode. Xylose isomerase, phosphoketolase, transaldolase, l- and d-lactate dehydrogenases are the key enzymes that affect the ways of lactic acid production. Metabolic engineering of microbial strains are usually needed to produce lactic acid from unconventional carbon sources. Production of d-LA has attracted much attention due to the demand for producing thermostable PLA, but large scale production of d-LA has not yet been commercialized. Thermophilic Bacillus coagulans strains are able to produce l-lactic acid from lignocellulose sugars homo-fermentatively under non-sterilized conditions, but the lack of genetic tools for metabolically engineering them severely affects their development for industrial applications. Pre-treatment of agriculture biomass to obtain fermentable sugars is a pre-requisite for utilization of the huge amounts of agricultural biomass to produce lactic acid. The major challenge is to obtain quality sugars of high concentrations in a cost effective-way. To avoid or minimize the use of neutralizing agents during fermentation, genetically engineering the strains to make them resist acidic environment and produce lactic acid at low pH would be very helpful for reducing the production cost of lactic acid.  相似文献   
893.
Modularly upgradable product designs have been advocated to offer environmental and economic advantages; however, they are not commonly used in the consumer electronics industry. In this article, we investigate the economic and environmental benefits and challenges of modular upgradability for consumer electronics. From an economic point of view, we posit that the limited adoption of modular upgradability in consumer electronics is owing to various demand‐, technology‐, and competition‐related issues. From an environmental point of view, we posit that modularly upgradable product designs may not necessarily lead to superior environmental outcomes. To reach meaningful conclusions regarding the environmental benefits of modular upgradability, one needs to understand how product architecture affects demand, production, and consumption patterns, which arise from endogenous consumer and manufacturer choices. It is also important to take into account that modular upgradability may have potentially differentiated effects in the production, consumption, and postuse phases of the lifecycle.  相似文献   
894.
Extended producer responsibility (EPR) policies have proven effective at raising consumer awareness, expanding waste collection infrastructure, and shifting costs of end‐of‐life (EOL) management from municipalities to stewardship organizations. Yet, such policies have been less successful in advancing waste management programs that ensure a net environmental benefit. This article analyzes how EPR policies for single‐use batteries in the European Union (EU), Canada, and the United States address the environmental costs and benefits of EOL management. Considering these EPR policies is instructive, because single‐use batteries have high collection costs and are of relatively low economic value for waste processors. Without deliberate planning, the environmental burdens of collecting and recycling such batteries may exceed the benefits. This article considers how EPR policies for single‐use batteries integrate performance requirements such as collection rates, recycling efficiencies, and best available techniques. It argues that for such policies to be effective, they need to be extended to address waste collection practices, the life cycle consequences of EOL management, and the quality of recovered materials. Such strategies are relevant to EPR policies for other products with marginal secondary value, including some textiles, plastics, and other types of electronic waste.  相似文献   
895.
Cystathionine β-synthase (CBS) is a pyridoxal phosphate-dependent enzyme that catalyzes the condensation of homocysteine with serine or with cysteine to form cystathionine and either water or hydrogen sulfide, respectively. Human CBS possesses a noncatalytic heme cofactor with cysteine and histidine as ligands, which in its oxidized state is relatively unreactive. Ferric CBS (Fe(III)-CBS) can be reduced by strong chemical and biochemical reductants to Fe(II)-CBS, which can bind carbon monoxide (CO) or nitric oxide (NO), leading to inactive enzyme. Alternatively, Fe(II)-CBS can be reoxidized by O2 to Fe(III)-CBS, forming superoxide radical anion (O2˙̄). In this study, we describe the kinetics of nitrite (NO2) reduction by Fe(II)-CBS to form Fe(II)NO-CBS. The second order rate constant for the reaction of Fe(II)-CBS with nitrite was obtained at low dithionite concentrations. Reoxidation of Fe(II)NO-CBS by O2 showed complex kinetic behavior and led to peroxynitrite (ONOO) formation, which was detected using the fluorescent probe, coumarin boronic acid. Thus, in addition to being a potential source of superoxide radical, CBS constitutes a previously unrecognized source of NO and peroxynitrite.  相似文献   
896.
The α7 nicotinic acetylcholine receptors (nAChRs) are uniquely sensitive to selective positive allosteric modulators (PAMs), which increase the efficiency of channel activation to a level greater than that of other nAChRs. Although PAMs must work in concert with “orthosteric” agonists, compounds such as GAT107 ((3aR,4S,9bS)-4-(4-bromophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide) have the combined properties of agonists and PAMs (ago-PAM) and produce very effective channel activation (direct allosteric activation (DAA)) by operating at two distinct sites in the absence of added agonist. One site is likely to be the same transmembrane site where PAMs like PNU-120596 function. We show that the other site, required for direct activation, is likely to be solvent-accessible at the extracellular domain vestibule. We identify key attributes of molecules in this family that are able to act at the DAA site through variation at the aryl ring substituent of the tetrahydroquinoline ring system and with two different classes of competitive antagonists of DAA. Analyses of molecular features of effective allosteric agonists allow us to propose a binding model for the DAA site, featuring a largely non-polar pocket accessed from the extracellular vestibule with an important role for Asp-101. This hypothesis is supported with data from site-directed mutants. Future refinement of the model and the characterization of specific GAT107 analogs will allow us to define critical structural elements that can be mapped onto the receptor surface for an improved understanding of this novel way to target α7 nAChR therapeutically.  相似文献   
897.
The sodium (Na+)-calcium (Ca2+) exchanger 1 (NCX1) is an important regulator of intracellular Ca2+ homeostasis. Serine 68-phosphorylated phospholemman (pSer-68-PLM) inhibits NCX1 activity. In the context of Na+/K+-ATPase (NKA) regulation, pSer-68-PLM is dephosphorylated by protein phosphatase 1 (PP1). PP1 also associates with NCX1; however, the molecular basis of this association is unknown. In this study, we aimed to analyze the mechanisms of PP1 targeting to the NCX1-pSer-68-PLM complex and hypothesized that a direct and functional NCX1-PP1 interaction is a prerequisite for pSer-68-PLM dephosphorylation. Using a variety of molecular techniques, we show that PP1 catalytic subunit (PP1c) co-localized, co-fractionated, and co-immunoprecipitated with NCX1 in rat cardiomyocytes, left ventricle lysates, and HEK293 cells. Bioinformatic analysis, immunoprecipitations, mutagenesis, pulldown experiments, and peptide arrays constrained PP1c anchoring to the K(I/V)FF motif in the first Ca2+ binding domain (CBD) 1 in NCX1. This binding site is also partially in agreement with the extended PP1-binding motif K(V/I)FF-X5–8Φ1Φ2-X8–9-R. The cytosolic loop of NCX1, containing the K(I/V)FF motif, had no effect on PP1 activity in an in vitro assay. Dephosphorylation of pSer-68-PLM in HEK293 cells was not observed when NCX1 was absent, when the K(I/V)FF motif was mutated, or when the PLM- and PP1c-binding sites were separated (mimicking calpain cleavage of NCX1). Co-expression of PLM and NCX1 inhibited NCX1 current (both modes). Moreover, co-expression of PLM with NCX1(F407P) (mutated K(I/V)FF motif) resulted in the current being completely abolished. In conclusion, NCX1 is a substrate-specifying PP1c regulator protein, indirectly regulating NCX1 activity through pSer-68-PLM dephosphorylation.  相似文献   
898.
Rhodopsins are one of the most studied photoreceptor protein families, and ion‐translocating rhodopsins, both pumps and channels, have recently attracted broad attention because of the development of optogenetics. Recently, a new functional class of ion‐pumping rhodopsins, an outward Na+ pump, was discovered, and following structural and functional studies enable us to compare three functionally different ion‐pumping rhodopsins: outward proton pump, inward Cl? pump, and outward Na+ pump. Here, we review the current knowledge on structure‐function relationships in these three light‐driven pumps, mainly focusing on Na+ pumps. A structural and functional comparison reveals both unique and conserved features of these ion pumps, and enhances our understanding about how the structurally similar microbial rhodopsins acquired such diverse functions. We also discuss some unresolved questions and future perspectives in research of ion‐pumping rhodopsins, including optogenetics application and engineering of novel rhodopsins.
  相似文献   
899.
Iron deficiency triggers various processes in cyanobacterial cells of which the synthesis of an additional antenna system (IsiA) around photosystem (PS) 1 is well documented [T.S. Bibby, J. Nield, J. Barber, Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria, Nature 412 (2001) 743-745, E.J. Boekema, A. Hifney, A.E. Yakushevska, M. Piotrowski, W. Keegstra, S. Berry, K.P. Michel, E.K. Pistorius, J. Kruip, A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria, Nature 412 (2001) 745-748]. Here we show that PS2 also undergoes prominent structural changes upon iron deficiency: Prerequisite is the isolation and purification of a PS2-IdiA complex which is exclusively synthesized under these conditions. Immunoblotting in combination with size exclusion chromatography shows that IdiA is only bound to dimeric PS2. Using single particle analysis of negatively stained specimens, IdiA can be localized in averaged electron micrographs on top of the CP43 subunit facing the cytoplasmic side in a model derived from the known 3D structure of PS2 [B. Loll, J. Kern, W. Saenger, A. Zouni, J. Biesiadka, Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II, Nature 438 (2005) 1040-4]. The presence of IdiA as integral part of PS2 is the first example of a new PS2 protein being expressed under stress conditions, which is missing in highly purified PS2 complexes isolated from iron-sufficient cells.  相似文献   
900.
Voltage-gated ion channels (VGCs) mediate selective diffusion of ions across cell membranes to enable many vital cellular processes. Three-dimensional structure data are lacking for VGC proteins; hence, to better understand their function, there is a need to identify the conserved motifs using sequence analysis methods. In this study, we have used a profile-to-profile alignment method to identify several new conserved motifs specific to each transmembrane segment (TMS) of the voltage-sensing and the pore-forming modules of Ca2+, Na+, and K+ channel subfamilies. For Ca2+ and Na+, the functional theme of motif conservation is similar in all segments while they differ with those of the K+ channel proteins. Nevertheless, the conservation is strikingly similar in the S4 segment of the voltage-sensing module across all subfamilies. In each subfamily and for each TMS, we have identified conserved motifs/residues and correlated their functional significance and disease associations in human, using mutational data from the literature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号