首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5282篇
  免费   255篇
  国内免费   132篇
  2024年   3篇
  2023年   46篇
  2022年   87篇
  2021年   93篇
  2020年   100篇
  2019年   114篇
  2018年   129篇
  2017年   119篇
  2016年   109篇
  2015年   168篇
  2014年   256篇
  2013年   345篇
  2012年   136篇
  2011年   207篇
  2010年   179篇
  2009年   220篇
  2008年   278篇
  2007年   297篇
  2006年   270篇
  2005年   240篇
  2004年   240篇
  2003年   212篇
  2002年   191篇
  2001年   124篇
  2000年   138篇
  1999年   139篇
  1998年   131篇
  1997年   154篇
  1996年   108篇
  1995年   100篇
  1994年   85篇
  1993年   95篇
  1992年   90篇
  1991年   69篇
  1990年   72篇
  1989年   63篇
  1988年   56篇
  1987年   41篇
  1986年   24篇
  1985年   39篇
  1984年   33篇
  1983年   18篇
  1982年   20篇
  1981年   12篇
  1980年   7篇
  1979年   7篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
排序方式: 共有5669条查询结果,搜索用时 15 毫秒
51.
R. Grotha 《Planta》1986,169(4):546-554
The Ca2+ indicator 7-chlorotetracycline has been shown to bind to a pore complex on both outer surfaces of all non-meristematic cells in the unistratose thallus of Riella (chlorotetracycline-binding surface region=CSR; Grotha, 1983, Planta 158, 473–481). Prolonged treatment of the thallus with 7-chlorotetracycline, 5-hydroxytetracycline, verapamil and desmethoxyverapamil induces the deposition of callose at the same region. The influence of various treatments on verapamil-induced CSR-callose was measured in situ by microfluorometry of aniline-blue-stained material. Callose deposition is maximal at 10-4M verapamil or 5·10-5M desmethoxyverapamil with 2·10-4M Ca2+ or Mg2+ in the medium. The reaction is completely inhibited at pH 5.5 and is optimal between pH 6.5 and 7.5. The production of CSR-callose is absolutely light-dependent with callose being first visible after 30 min of light. La3+, ethylene glycol-bis(-aminoethylether)-N,N,N,N-tetraacetic acid and amiprophosmethyl, antagonists of Ca2+ functions, and 2-deoxy-D-glucose suppress the verapamil induction of CSR-callose. Furthermore the ionophores A 23187, valinomycin and monensin effectively block the reaction. The deposition of CSR-callose is diminished at increasing external osmolarity and is abolished at osmotic values that stimulate plasmolysis-callose. Wounding causes the formation of wound-callose but inhibits the induction of CSR-callose in cells of the wound edge. Nifedipine increases or prolongs callose synthesis in cell plates. The Ca2+-channel blocker diltiazem is completely ineffective. It is suggested as a working hypothesis that verapamil-induced CSR-callose synthesis is caused by a local change in membrane permeability, possibly as a consequence of the opening of Ca2+ channels being involved in Golgi-vesicle mediated exocytosis (A. Kramer and H. Lehmann, 1986, Ber. Dtsch. Bot. Ges. 99, 111–121).Abbreviations APM amiprophosmethyl - APW artificial pond water - CSR chlorotetracycline-binding surface region - CTC 7-chlorotetracycline - DDG 2-deoxy-D-glucose - EGTA ethylone glycol-bis(2-aminoethylether)-N,N,N,N-tetraacetic acid - OTC 5-hydroxytetracycline - Pipes 1,4-piperazinediethane sulfonic acid Dedicated to Professor Luise Stange on the occasion of her 60th birthday  相似文献   
52.
Megathura crenulata hemocyanin forms ionic channels in planar lipid bilayer membranes. It was found that hemocyanin is more potent as a channel former if TbCl3 is added to the bathing solution. Furthermore membranes separating symmetrical TbCl3 solutions show a pore formation rate which depends exponentially on the applied voltage, positive potentials favouring the insertion of new channels. The slope of this voltage dependence, which gives a measure of the effective charge displaced during the incorporation of one channel, increases and saturates with TbCl3 concentration. The dose response curve indicates that binding of Tb3+ to the phosphatidylcholine bilayer is involved in creating the effective charge.  相似文献   
53.
Summary Monoclonal antibodies directed against the cholinergic binding site of the acetylcholine receptor were found to alter the ion channel properties in cultured chick myoballs. Time and dose dependent reduction in acetylcholine sensitivity was observed. Noise analysis experiments indicated a decrease in the mean single channel conductance and an increase in the mean single channel open time.  相似文献   
54.
Entropy effects on the ion-diffusion rate in transmembrane protein channels   总被引:1,自引:0,他引:1  
We treat the transport of univalent cations through pore-like protein channels in biological membranes analytically, using two models (A + B) for the channel and the ion-channel interaction. A Lennard-Jones-type repulsion between the ions and the pore wall is introduced. We also include Van der Waals- and coulomb-type interactions between polar ligands of the pore-forming protein (e.g., carbonyl groups directed towards the axis of the channel) and the migrating particles. In model A, the polar groups are assumed to occur in pairs of dipoles pointing in opposite directions (as in the gramicidin A channel), while in model B the channel is treated as a pore with a radially isotropic charge distribution. In both models the ion-channel interaction leads to the occurrence of periodic potentials, corresponding to quasi-equilibrium and transition state sites of the ion in the pore. The diffusion rate can be calculated employing rate-theoretical concepts on the basis of microscopic parameters. It is demonstrated that the anomaly (inversion of the normal mass effect) for the transport rates of different ions can be related to differences in the activation entropy. The latter quantity is estimated analytically for both models. As a test, we performed numerical calculations with parameters based on the gramicidin A model. The results are in good agreement with experimental data and data from computer simulations. This shows that simple analytic expressions are well suited for predicting trends in the ionic conductivity of protein channels on the basis of microscopic interactions.  相似文献   
55.
The migration of different alkali metal cations through a transmembrane model channel is simulated by means of the molecular dynamics technique. The parameters of the model are chosen in close relation to the gramicidin A channel. Coulomb- and van der Waals-type potentials between the ions and flexible carbonyl groups of the pore-forming molecule are used to describe the ion channel interaction. The diffusion properties of the ions are obtained from three-dimensional trajectory calculations. The diffusion rates for the different ions Li+, Na+, K+ and Rb+ are affected not only by the mass of the particles but also very strongly by their size. The latter effect is more pronounced for rigid channels, i.e., for binding vibrational frequencies of the CO groups with v greater than 400 cm-1. In this range the selectivity sequence for the diffusion rates is the inverse of that expected from normal rate theory but agrees with that found in experiments for gramicidin A.  相似文献   
56.
Resistance to pyrethroid insecticides and dichlorodiphenyltrichloroethane (DDT) was investigated in the napts (no action potential, temperature sensitive) mutant of Drosophila melanogaster. In surface contact bioassays, the napts strain showed threefold resistance to deltamethrin at the LC50 level when compared to susceptible Canton-S flies. Cross-resistance was also observed to DDT and the pyrethroids NRDC 157 [3-phenoxybenzyl [1R,cis]-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropanecarboxylate], fenfluthrin, and MTI-800 [1-(3-phenoxy-4-fluorophenyl)-4-(4-ethoxyphenyl)-4-methylpentane]. The onset of intoxication by pyrethroids in napts flies was markedly delayed, a finding that is consistent with the existence of a resistance mechanism involving reduced neuronal sensitivity. Resistance at the level of the nerve was confirmed by electrophysiological recordings of spontaneous and evoked activity in the dorsolongitudinal flight muscles of poisoned flies. Preparations from napts insects treated with fenfluthrin displayed longer latencies to the appearance of spontaneous activity and also an absence or reduction in burst discharges compared to equivalent preparations from susceptible individuals. These results are discussed in light of competing hypotheses concerning the mechanism underlying knockdown resistance and reduced nerve sensitivity in insects.  相似文献   
57.
Summary The changes in Na current during development were studied in the dorsal root ganglion (DRG) cells using the whole-cell patch-clamp technique. Cells obtained from rats 1–3 and 5–8 days after birth were cultured and their Na currents were compared. On top of the two types of Na currents reported in these cells (fast-FA current and slow-S current) a new fast current was found (FN). The main characteristics of the three currents are: (i) The voltages of activation are –37, –36, and –23 mV for the FN, FA and S currents, respectively. (ii) The activation and inactivation kinetics of FN and FA currents are about five times faster than those of the S current. (iii) The voltages at which inactivation reaches 50% are –139, –75 and –23 mV for the FN, FA and S currents, respectively.The kinetics and voltage-dependent parameters of the three currents and their density do not change during the first eight days after birth. However, their relative frequency in the cells changes. In the 1–3 day-old rats the precent of cells with S, FA, and mixed S+FN currents is 22, 18, and 60% of the cells, respectively. In the 5–8 day-old, the percent of cells with S, FA, and FN+S is 10, 66 and 22%. The relative increase in the frequency of cells with FA current during development can contribute to the ease of action potential generation compared with cells with FN currents, which are almost completely inactivated under physiological conditions. The predominance of FA cells also results in a significant decrease in the relative frequency of cells with the high-threshold, slow current.Antibodies directed against a part of the S4 region of internal repeat I of the sodium channel (C 1 + , amino acids 210–223, eel channel numbering) were found to shift the voltage dependence of FA current inactivation (but not of FN or S currents) to more negative potentials. The effect was found only when the antibodies were applied externally. The results suggest that FN, FA and S types of Na currents are generated by channels, which are different in the topography of the C 1 + region in the membrane.  相似文献   
58.
Summary Changes in the chord conductanceG and the membrane electromotive forceE m in the so-called breakdown region of large negative potential of theChara plasmalemma were analyzed in more detail. In addition to the increase inG, the voltage sensitivity of the change inG increased, which was the cause of marked inductive current in the breakdown region. The breakdown potential, defined as a critical potential at which both low and high slope conductances of theI–V m relationship cross, almost coincided with the potential at which an inductive current began to appear. This breakdown potential level changed with pH o in a range between 5 and 9. TheChara plasmalemma was electrically most tolerant around pH o 7.In some cellsE m shifted to a positive level as large as +50+70 mV during the breakdown phenomenon. Such a large positive shift ofE m is caused mainly by the increase in conductance of Cl and partly Ca2+ and K+.  相似文献   
59.
Summary Two different3H-saxitoxin-binding proteins, with distinct biochemical and functional properties, were isolated from rat brain using a combination of anion exchange and lectin affinity chromatography as well as high resolution size exclusion and anion exchange HPLC. The alpha subunits of the binding proteins had different apparent molecular weights on SDS-PAGE (Type A: 235,000; Type B: 260,000). When reconstituted into planar lipid bilayers, the two saxitoxin-binding proteins formed sodium channels with different apparent single-channel conductances in the presence of batrachotoxin (Type A: 22 pS; Type B: 12 pS) and veratridine (Type A: 9 pS; Type B: 5 pS). The subtypes were further distinguished by scorpion (Leiurus quinquestriatus) venom which had different effects on single-channel conductance and gating of veratridine-activated Type A and Type B channels. Scorpion venom caused a 19% increase in single-channel conductance of Type A channels and a 35-mV hyperpolarizing shift in activation. Scropion venom double the single-channel conductance of Type B channels and shifted activation by at least 85 mV.  相似文献   
60.
Summary The present studies examined some of the properties of Cl channels in renal outer medullary membrane vesicles incorporated into planar lipid bilayers. The predominant channel was anion selective having aP Cl/P K ratio of 10 and a unit conductance of 93 pS in symmetric 320mm KCl. In asymmetric KCl solutions, theI-V relations conformed to the Goldman-Hodgkin-Katz equation. Channel activity was voltage-dependent with a gating charge of unity. This voltage dependence of channel activity may account, at least in part, for the striking voltage dependence of the basolateral membrane Cl conductance of isolated medullary thick ascending limb segments. The Cl channels incorporated into the planar bilayers were asymmetrical: thetrans surface was sensitive to changes in ionized Ca2+ concentrations and insensitive to reducing KCl concentrations to 10mm, while thecis side was insensitive to changes in ionized Ca2+ concentrations, but was inactivated by reducing KCl concentrations to 50mm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号