首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   5篇
  2022年   1篇
  2020年   5篇
  2019年   3篇
  2018年   8篇
  2017年   6篇
  2016年   1篇
  2015年   4篇
  2014年   4篇
  2013年   17篇
  2012年   5篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   4篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   6篇
  2000年   1篇
  1999年   1篇
  1995年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
81.
Despite the significant efforts devoted to decipher the particular protein features that encode for a prion or prion-like behavior, they are still poorly understood. The well-characterized yeast prions constitute an ideal model system to address this question, because, in these proteins, the prion activity can be univocally assigned to a specific region of their sequence, known as the prion forming domain (PFD). These PFDs are intrinsically disordered, relatively long and, in many cases, of low complexity, being enriched in glutamine/asparagine residues. Computational analyses have identified a significant number of proteins having similar domains in the human proteome. The compositional bias of these regions plays an important role in the transition of the prions to the amyloid state. However, it is difficult to explain how composition alone can account for the formation of specific contacts that position correctly PFDs and provide the enthalpic force to compensate for the large entropic cost of immobilizing these domains in the initial assemblies. We have hypothesized that short, sequence-specific, amyloid cores embedded in PFDs can perform these functions and, accordingly, act as preferential nucleation centers in both spontaneous and seeded aggregation. We have shown that the implementation of this concept in a prediction algorithm allows to score the prion propensities of putative PFDs with high accuracy. Recently, we have provided experimental evidence for the existence of such amyloid cores in the PFDs of Sup35, Ure2, Swi1, and Mot3 yeast prions. The fibrils formed by these short stretches may recognize and promote the aggregation of the complete proteins inside cells, being thus a promising tool for targeted protein inactivation.  相似文献   
82.
Protein aggregation is a hallmark of diverse neurodegenerative diseases. Multiple lines of evidence have revealed that protein aggregates can penetrate inside cells and spread like prions. How such aggregates enter cells remains elusive. Through a focused siRNA screen targeting genes involved in membrane trafficking, we discovered that mutant SOD1 aggregates, like viruses, exploit cofilin‐1 to remodel cortical actin and enter cells. Upstream of cofilin‐1, signalling from the RHO GTPase and the ROCK1 and LIMK1 kinases controls cofilin‐1 activity to remodel actin and modulate aggregate entry. In the spinal cord of symptomatic SOD1G93A transgenic mice, cofilin‐1 phosphorylation is increased and actin dynamics altered. Importantly, the RHO to cofilin‐1 signalling pathway also modulates entry of tau and α‐synuclein aggregates. Our results identify a common host cell signalling pathway that diverse protein aggregates exploit to remodel actin and enter cells.  相似文献   
83.
Calcium (Ca2+) is an intracellular second messenger that ubiquitously masters remarkably diverse biological processes, including cell death. Growing evidence substantiates an involvement of the prion protein (PrPC) in regulating neuronal Ca2+ homeostasis, which could rationalize most of the wide range of functions ascribed to the protein. We have recently demonstrated that PrPC controls extracellular Ca2+ fluxes, and mitochondrial Ca2+ uptake, in neurons stimulated with glutamate (De Mario et al., J Cell Sci 2017; 130:2736-46), suggesting that PrPC protects neurons from threatening Ca2+ overloads and excitotoxicity. In light of these results and of recent reports in the literature, here we review the connection of PrPC with Ca2+ metabolism and also provide some speculative hints on the physiologic outcomes of this link. In addition, because PrPC is implicated in neurodegenerative diseases, including prion disorders and Alzheimer's disease, we will also discuss possible ways by which disruption of PrPC-Ca2+ association could be mechanistically connected with these pathologies.  相似文献   
84.
85.
86.
Cobalamin (Cbl), epidermal growth factor (EGF), and prions (PrPs) are key molecules for myelin maintenance in the central and peripheral nervous systems. Cbl and EGF increase normal prion (PrPC) synthesis and PrPC levels in rat spinal cord (SC) and elsewhere. Cbl deficiency increases PrPC levels in rat SC and cerebrospinal fluid (CSF), and decreases PrPC-mRNA levels in rat SC. The administration of anti-octapeptide repeat PrPC region antibodies (Abs) to Cbl-deficient (Cbl-D) rats prevents SC myelin lesions and a local increase in tumor necrosis factor (TNF)-α levels, whereas anti-TNF-α Abs prevent SC myelin lesions and the increase in SC and CSF PrPC levels. As it is known that both Cbl and EGF regulate SC PrPC synthesis independently, and that Cbl regulates SC EGF synthesis, EGF may play both Cbl-independent and Cbl-dependent roles. When Cbl-D rats undergo Cbl replacement therapy, SC PrPC levels are similar to those observed in Cbl-D rats. In rat frontal cortex (which is marginally affected by Cbl deficiency in histological terms), Cbl deficiency decreases PrPC levels and the increase induced by Cbl replacement leads to their normalization. Increased nerve PrPC levels are detected in the myelin lesions of the peripheral neuropathy of Cbl-D rats, and CSF PrPC levels are also increased in Cbl-D patients (but not in patients with Cbl-unrelated neurological diseases). Various common steps in the downstream signaling pathway of Cbl, EGF, and PrPC underlines the close relationship between the three molecules in keeping myelin normal.  相似文献   
87.
Aims: This paper describes a procedure for evaluating the presence and the stability of the proteinase K-resistant form of the prion protein (PrPres) in slaughterhouse wastewater. Methods and Results: Wastewater samples were spiked with either scrapie or bovine spongiform encephalopathy agents and PrPres was concentrated and detected by western blotting. The detection limit was estimated to be 2–4 μg of either scrapie or BSE-infected brain tissue in 15 ml of sewage. Wastewater samples from three abattoirs were analysed, two of which had processed BSE-infected animals. No PrPres was detected. The effect of sewage on the inoculum and the persistence of transmissible spongiform encephalopathy agents in wastewater were also considered. Conclusions: The results of the assay suggest that wastewaters from abattoirs where one positive BSE case has been identified would contain titres lower than 0·6–26 × 10−4 cattle oral ID50 per litre resulting from specified risk material tissue contamination. Moreover, the effect of abattoir wastewaters is to reduce the persistence of PrPres. Significance and Impact of the Study: The assay may be a useful tool for risk assessment studies and for reducing the potential risk of contamination with BSE via sewage sludge fertilizer procedures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号