首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3187篇
  免费   343篇
  国内免费   338篇
  3868篇
  2024年   15篇
  2023年   80篇
  2022年   107篇
  2021年   124篇
  2020年   117篇
  2019年   138篇
  2018年   152篇
  2017年   126篇
  2016年   111篇
  2015年   99篇
  2014年   171篇
  2013年   206篇
  2012年   139篇
  2011年   131篇
  2010年   111篇
  2009年   124篇
  2008年   139篇
  2007年   153篇
  2006年   133篇
  2005年   122篇
  2004年   111篇
  2003年   103篇
  2002年   111篇
  2001年   87篇
  2000年   72篇
  1999年   60篇
  1998年   65篇
  1997年   53篇
  1996年   67篇
  1995年   35篇
  1994年   34篇
  1993年   44篇
  1992年   39篇
  1991年   41篇
  1990年   40篇
  1989年   36篇
  1988年   39篇
  1987年   29篇
  1986年   36篇
  1985年   29篇
  1984年   40篇
  1983年   29篇
  1982年   31篇
  1981年   37篇
  1980年   26篇
  1979年   20篇
  1978年   12篇
  1977年   15篇
  1976年   11篇
  1975年   8篇
排序方式: 共有3868条查询结果,搜索用时 10 毫秒
141.
Aims Mesic grasslands have a long evolutionary history of grazing by large herbivores and as a consequence, grassland species have numerous adaptations allowing them to respond favourably to grazing. Although empirical evidence has been equivocal, theory predicts that such adaptations combined with alterations in resources can lead to grazing-induced overcompensation in aboveground net primary production (ANPP; grazed ANPP> ungrazed ANPP) under certain conditions. We tested two specific predictions from theory. First, overcompensation is more likely to occur in annually burned grasslands because limiting nutrients that would be lost with frequent fires are recycled through grazers and stimulate ANPP. Second, overcompensation of biomass lost to grazers is more likely to occur in unburned sites where grazing has the greatest effect on increasing light availability through alterations in canopy structure.Methods We tested these nutrient versus light-based predictions in grazed grasslands that had been annually burned or protected from fire for>20 years. We assessed responses in ANPP to grazing by large ungulates using both permanent and moveable grazing exclosures (252 exclosures from which biomass was harvested from 3192 quadrats) in a 2-year study. Study sites were located at the Konza Prairie Biological Station (KPBS) in North America and at Kruger National Park (KNP) in South Africa. At KPBS, sites were grazed by North American bison whereas in KNP sites were grazed either by a diverse suite of herbivores (e.g. blue wildebeest, Burchell's zebra, African buffalo) or by a single large ungulate (African buffalo).Important findings We found no evidence for overcompensation in either burned or unburned sites, regardless of grazer type. Thus, there was no support for either mechanism leading to overcompensation. Instead, complete compensation of total biomass lost to grazers was the most common response characterizing grazing–ANPP relationships with, in some cases, undercompensation of grass ANPP being offset by increased ANPP of forbs likely due to competitive release. The capability of these very different grass-dominated systems to maintain ANPP while being grazed has important implications for energy flow, ecosystem function and the trophic dynamics of grasslands.  相似文献   
142.
A total of 447 primary root-caries lesions from 169 dental patients was studied to determine the relationships between mutans streptococci and the perceived treatment need of primary root-caries lesions. Samples of this altered dentine for microbiological culture were obtained. Lesions were classified into 5 treatment categories; soft and restore, leathery and restore, leathery and debride of caries, leathery and treat chemotherapeutically, and hard, to receive no treatment. The total numbers of mutans streptococci decreased significantly with decreased treatment need. The percentage of mutans streptococci from lesions requiring no treatment was significantly less than from lesions requiring treatment. The frequency of isolation of mutans streptococci was significantly greater from lesions requiring more treatment. Significantly more lesions containing > 102 mutans streptococci were distributed in the groups with a greater perceived treatment need or with larger dimensions occlusogingivally and/or mesio-distally or bucco-lingually or with a closer proximity to the gingival margin.  相似文献   
143.
Year-round measurements of the standing crop of epilithic algae (as chlorophyll a concentration) in two streams — one second and one fourth order (map scale 1:63 360) — in interior Alaska (64°–65° N) were only about one tenth that reported from streams of temperate North America. Cell densities in these streams, however, were similar to those in comparable temperate streams. Year-round domination of the benthic flora by very tiny diatoms (Achnanthes spp.) may explain the apparent disparity between low chlorophyll a content and nearly average cell densities. Chlorophyll a standing crop in a more alkaline groundwater-fed stream, however, was higher and within the range of similarly sized temperate streams. Maximum chlorophyll a standing crop varied positively with alkalinity in 5 clear-water streams where standing crop was measured on natural or artificial substrates. Seasonal mean concentrations of sestonic chlorophyll a (used as estimates of benthic algal chlorophyll a standing crop) varied directly and significantly with alkalinity among ten clear-water streams; and, with total phosphorus among 8 of 10 clear-water and 5 brown-water streams studied. During the summer, when there is little darkness, gross primary productivity (as estimated by the diurnal dissolved-oxygen method) was similar to that of northern temperate streams. Gross primary productivity was also seen to vary directly with alkalinity in 5 clear-water streams of this region.U.S. Fish and Wildlife Service  相似文献   
144.
Delayed fluorescence from Rhodopseudomonas viridis membrane fragments has been studied using a phosphoroscope employing single, short actinic flashes, under conditions of controlled redox potential and temperature. The emission spectrum shows that delayed fluorescence is emitted by the bulk, antenna bacteriochlorophyll. The energy for delayed fluorescence, however, must be stored in a reaction-center complex including the photooxidized form (P+) of the primary electron-donor (P) and the photoreduced form (X?) of the primary electron-acceptor. This is shown by the following observations: (1) Delayed luminescence is quenched (a) at low redox potentials which allow cytochromes to reduce P+ rapidly after the flash, (b) at higher redox potentials which, by oxidizing P chemically, prevent the photochemical formation of P+X?, and (c) upon transfer of an electron from X? to a secondary acceptor, Y. (2) Under conditions that prevent the reduction of P+ by cytochromes and the oxidation of X? by Y, the decay kinetics of delayed fluorescence are identical with those of P+X?, as measured from optical absorbance changes.The main decay route for P+X? under these conditions has a rate-constant of approximately 103 s?1. In contrast, a comparison of the intensities of delayed and prompt fluorescence indicates that the process in which P+X? returns energy to the bulk bacteriochlorophyll has a rate-constant of 3.7 s?1, at 295 °K and pH 7.8. The decay kinetics of P+X? and delayed fluorescence change little with temperature, whereas the intensity of delayed fluorescence increases with increasing temperature, having an activation energy of 12.5 kcal · mol?1. We conclude that the main decay route involves tunneling of an electron from X? to P+, without the promotion of P to an excited state. Delayed fluorescence requires such a promotion, followed by transfer of energy to the bulk bacteriochlorophyll, and this combination of events is rare. The activation energy, taken with potentiometric data, indicates that the photochemical conversion of PX to P+X? results in increases of both the energy and the entropy of the system, by 16.6 kcal · mol?1 and 8.8 cal · mol?1 · deg?1. The intensity of delayed fluorescence depends strongly on the pH; the origin of this effect remains unclear.  相似文献   
145.
146.
Anti-phospholipase A2 receptor autoantibody (PLA2R-Ab) plays a critical role in the pathogenesis of primary membranous nephropathy (PMN), an autoimmune kidney disease characterized by immune deposits in the glomerular subepithelial spaces and proteinuria. However, the mechanism of how PLA2R-Abs interact with the conformational epitope(s) of PLA2R has remained elusive. PLA2R is a single transmembrane helix receptor containing ten extracellular domains that begin with a CysR domain followed by a FnII and eight CTLD domains. Here, we examined the interactions of PLA2R-Ab with the full PLA2R protein, N-terminal domain truncations, and C-terminal domain deletions under either denaturing or physiological conditions. Our data demonstrate that the PLA2R-Abs against the dominant epitope (the N-terminal CysR-CTLD1 triple domain) possess weak cross-reactivities to the C-terminal domains beyond CTLD1. Moreover, both the CysR and CTLD1 domains are required to form a conformational epitope for PLA2R-Ab interaction, with FnII serving as a linker domain. Upon close examination, we also observed that patients with newly diagnosed PMN carry two populations of PLA2R-Abs in sera that react to the denatured CysR-CTLD3 (the PLA2R-Ab1) and denatured CysR-CTLD1 (the PLA2R-Ab2) domain complexes on Western blots, respectively. Furthermore, the PLA2R-Ab1 appeared at an earlier time point than PLA2R-Ab2 in patients, whereas the increased levels of PLA2R-Ab2 coincided with the worsening of proteinuria. In summary, our data support that an integrated folding of the three PLA2R N-terminal domains, CysR, FnII, and CTLD1, is a prerequisite to forming the PLA2R conformational epitope and that the dominant epitope-reactive PLA2R-Ab2 plays a critical role in PMN clinical progression.  相似文献   
147.
ABSTRACT On the breeding grounds, migratory birds have limited time to breed and molt before autumn migration. However, few studies of long‐distance migrants have examined the phenology of these events to determine what life‐history trade‐offs might result if these activities overlap. From 2000 to 2007, I used banding data to determine the timing of migration, breeding, and primary molt for Yellow Warblers (Dendroica petechia), Yellow‐rumped Warblers (D. coronata coronata), American Redstarts (Setophaga ruticilla), Ovenbirds (Seiurus aurocapilla), and Canada Warblers (Wilsonia canadensis) at a study site in Alberta, Canada. Hatching date did not differ among species (P= 0.63), with means ranging from 27 June to 3 July. All species began primary molt between 12 July and 18 July, near the expected fledging date of offspring, and therefore all species exhibited overlap between postfledging parental care and molt. The duration of primary molt ranged from 28 d for Canada Warblers to 69 d for Yellow‐rumped Warblers. Yellow Warblers, Yellow‐rumped Warblers, and American Redstarts began autumn migration having completed about 50% of their primary molt. However, Ovenbirds departed when 21% of molt was complete, and Canada Warblers departed 2 d after completing molt. For all five species of warblers, molt did not overlap with nest‐bound breeding activities. However, molt did overlap with both postfledging care and migration. This suggests that initiating migration as soon as possible is important, possibly because earlier arrival on the wintering grounds may improve access to high quality winter habitat. Overall, warblers may maximize individual fitness by combining life‐history events that result in overlapping portions of the breeding cycle, molt, and migration.  相似文献   
148.
The dynamics and demography of roots were followed for 5 years that spanned wet and drought periods in native, semiarid shortgrass steppe grassland exposed to ambient and elevated atmospheric CO2 treatments. Elevated compared with ambient CO2 concentrations resulted in greater root‐length growth (+52%), root‐length losses (+37%), and total pool sizes (+41%). The greater standing pool of roots under elevated compared with ambient CO2 was because of the greater number of roots (+35%), not because individuals were longer. Loss rates increased relatively less than growth rates because life spans were longer (+41%). The diameter of roots was larger under elevated compared with ambient CO2 only in the upper soil profile. Elevated CO2 affected root architecture through increased branching. Growth‐to‐loss ratio regressions to time of equilibrium indicate very long turnover times of 5.8, 7.0, and 5.3 years for control, ambient, and elevated CO2, respectively. Production was greater under elevated compared with ambient CO2 both below‐ and aboveground, and the above‐ to belowground ratios did not differ between treatments. However, estimates of belowground production differed among methods of calculation using minirhizotron data, as well as between minirhizotron and root‐ingrowth methods. Users of minirhizotrons may need to consider equilibration in terms of both new growth and disappearance, rather than just growth. Large temporal pulses of root initiation and termination rates of entire individuals were observed (analogous to birth–death rates), and precipitation explained more of the variance in root initiation than termination. There was a dampening of the pulsing in root initiation and termination under elevated CO2 during both wet and dry periods, which may be because of conservation of soil water reducing the suddenness of wet pulses and duration and severity of dry pulses. However, a very low degree of synchrony was observed between growth and disappearance (production and decomposition).  相似文献   
149.
Losses of soil organic carbon under wind erosion in China   总被引:7,自引:0,他引:7  
Soil organic carbon (SOC) storage generally represents the long‐term net balance of photosynthesis and total respiration in terrestrial ecosystems. However, soil erosion can affect SOC content by direct removal of soil and reduction of the surface soil depth; it also affects plant growth and soil biological activity, soil air CO2 concentration, water regimes, soil temperature, soil respiration, carbon flux to the atmosphere, and carbon deposition in soil. In arid and semi‐arid region of northern China, wind erosion caused soil degradation and desert expansion. This paper estimated the SOC loss of the surface horizon at eroded regions based on soil property and wind erosion intensity data. The SOC loss in China because of wind erosion was about 75 Tg C yr?1 in 1990s. The spatial pattern of SOC loss indicates that SOC loss of the surface horizon increases significantly with the increase of soil wind erosion intensity. The comparison of SOC loss and annual net primary productivity (NPP) of terrestrial ecosystem was discussed in wind erosion regions of China. We found that NPP is also low in the eroded regions and heavy SOC loss often occurs in regions where NPP is very small. However, there is potential to improve our study to resolve uncertainty on the soil organic matter oxidation and soil deposition processes in eroded and deposited sites.  相似文献   
150.
Second messengers are small rapidly diffusing molecules or ions that relay signals between receptors and effector proteins to produce a physiological effect. Lipid messengers constitute one of the four major classes of second messengers. The hydrolysis of two main classes of lipids, glycerophospholipids and sphingolipids, generate parallel profiles of lipid second messengers: phosphatidic acid (PA), diacylglycerol (DAG), and lysophosphatidic acid versus ceramide, ceramide-1-phosphate, sphingosine, and sphingosine-1-phosphate, respectively. In this review, we examine the mechanisms by which these lipid second messengers modulate aldosterone production at multiple levels. Aldosterone is a mineralocorticoid hormone responsible for maintaining fluid volume, electrolyte balance, and blood pressure homeostasis. Primary aldosteronism is a frequent endocrine cause of secondary hypertension. A thorough understanding of the signaling events regulating aldosterone biosynthesis may lead to the identification of novel therapeutic targets. The cumulative evidence in this literature emphasizes the critical roles of PA, DAG, and sphingolipid metabolites in aldosterone synthesis and secretion. However, it also highlights the gaps in our knowledge, such as the preference for phospholipase D-generated PA or DAG, as well as the need for further investigation to elucidate the precise mechanisms by which these lipid second messengers regulate optimal aldosterone production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号