首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3569篇
  免费   365篇
  国内免费   355篇
  2024年   16篇
  2023年   81篇
  2022年   109篇
  2021年   124篇
  2020年   123篇
  2019年   145篇
  2018年   172篇
  2017年   135篇
  2016年   115篇
  2015年   105篇
  2014年   191篇
  2013年   235篇
  2012年   145篇
  2011年   140篇
  2010年   130篇
  2009年   135篇
  2008年   151篇
  2007年   174篇
  2006年   141篇
  2005年   146篇
  2004年   123篇
  2003年   104篇
  2002年   117篇
  2001年   100篇
  2000年   81篇
  1999年   65篇
  1998年   76篇
  1997年   63篇
  1996年   73篇
  1995年   38篇
  1994年   44篇
  1993年   51篇
  1992年   42篇
  1991年   49篇
  1990年   47篇
  1989年   38篇
  1988年   43篇
  1987年   31篇
  1986年   41篇
  1985年   37篇
  1984年   50篇
  1983年   42篇
  1982年   44篇
  1981年   43篇
  1980年   34篇
  1979年   25篇
  1978年   14篇
  1977年   19篇
  1976年   16篇
  1974年   9篇
排序方式: 共有4289条查询结果,搜索用时 140 毫秒
81.
Recent studies provide further support for the hypothesis that spatial representations of limb position, target locations, and potential motor actions are expressed in the neuronal activity in parietal cortex. In contrast, precentral cortical activity more strongly expresses processes involved in the selection and execution of motor actions. As a general conceptual framework, these processes may be interpreted in terms of such formalisms as sensorimotor transformation and ‘internal models’.  相似文献   
82.
Yılmaz  Ayşen  Tuğrul  Süleyman  Polat  Çolpan  Ediger  Dilek  Çoban  Yeşim  Morkoç  Enis 《Hydrobiologia》1997,363(1-3):141-155
Chemical oceanographic understanding of the southernBlack Sea has been improved by recent measurements ofthe optical transparency, phytoplankton biomass (interms of chlorophyll-a and particulate organic matter)and primary productivity. During the spring-autmunperiod of 1995–1996, light generally penetrated onlyinto the upper 15–40 m, with an attenuation coefficientvarying between 0.125 and 0.350 m2122;1. The averagechlorophyll-a (Chl-a) concentrations for the euphoticzone ranged from 0.1 to 1.5 μg l2122;1. Coherentsub-surface Chl-a maxima were formed near the base ofthe euphotic zone only in summer. Production rate variedbetween 247 and 1925 in the spring and between 405 and687 mgC m2122;2 d2122;1 in the summer-autumn period.The average POM concentrations in the euphotic zonevaried regionally and seasonally between 3.8 and28.6 μm for POC, 0.5 and 3.1 μm for PON and0.02 and 0.1 μm for PP. Atomic ratios of C/N, C/Pand N/P, derived from the regressions of POM data,ranged between 7.5 and 9.6, 109 and 165, and 11.2 and16.6, respectively. In the suboxic/anoxic interface,the elemental ratios change substantially due to anaccumulation of PP cohering to Fe and Mn oxides. Thechemocline boundaries and the distinct chemicalfeatures of the oxic/anoxic transition layer (the so-called suboxic zone) are all located at specificdensity surfaces; however, they exhibit remarkablespatial and temporal variations both in their positionand in their magnitude, which permit the definition of long-term changes in the biochemical properties of theBlack Sea upper layer. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
83.
During the last decade, the Palmones River estuary has undergone severe eutrophication followed by a green tide episode; two species of Ulva, rotundata Blid. and Ulva curvata (Kütz.) De Toni, were the main macroalgae responsible for this bloom. From November 1993 to December 1994, we followed the biomass, the growth dynamics, and tissue elemental composition (C:N:P)of Ulva species, as well as some physicochemical variables in the estuary. Maximum biomass (up to 375 g dry wt·m?2 in some spots, corresponding to a thallus area index of nearly 17 m2Ulva·m?2 sediment) were observed in June and December. However, the biomass varied among the sampling stations. Water nitrate, ammonia, and phosphate showed high concentrations throughout the year, with extremely high transient pulses, sustaining the high growth rates observed. Growth rates were estimated directly in the field. The rates were generally higher in Ulva discs maintained in net cages than those estimated by changes in biomass standing stock between two consecutive samplings. The difference between both estimates was used to quantify the importance of the processes causing loss of biomass, which were attributable to grazing, exported biomass, and thallus decomposition under anaerobic conditions resulting from extreme self-shading. Maximum chlorophyll content was found in winter, whereas the minimum was in spring. Atomic N:P ratios were generally higher in the algae than in the water. However, the absolute concentrations of tissue N and P were always higher than the critical levels for maximum growth, which suggests that growth was not limited by inorganic N or P availability. The results suggested that the increase in nutrient loading in the river may have triggered the massive development of green algae and that light limitation and temperature stress in summer seem to be the main factors controlling the abundance of Ulva in the estuary. In addition to light availability and thermal stress, the different loss processes may have a decisive role in the dynamics of Ulva biomass.  相似文献   
84.
Summary Glucose-6-phosphatase activity decreases whereas gamma glutamyltranspeptidase activity increases during hepatocarcinogenesis and the maintenance of hepatocytes in primary culture. This report describes the effect of culture conditions that are known to preserve hepatic glucose-6-phosphatase activity on gamma glutamyltranspeptidase activity. The results indicate that the regulation of glucose-6-phosphatase and gamma glutamyltranspeptidase activities is not coordinated in primary cultures of hepatocytes. This work was supported by a grant from the USPHS, NIH grant AG00439 awarded to Dr. Christopher C. Widnell and a Category I Research Development Award from the University of Pittsburgh to Dr. Kathleen Dobrosielski-Vergona. Editor's Statement Information communicated in this article contributes to a greater understanding of the mechanisms regulating liver cell metabolism and provides some further insight concerning the complexity of the controls involved in vitro, and presumably in vivo. David W. Barnes  相似文献   
85.
86.
Radical-pair decay kinetics and molecular triplet quantum yields at various magnetic fields are reported for quinone-depleted reaction centers from the photosynthetic bacterium Rhodopseudomonas sphaeroides R26. The radical-pair decay is observed by picosecond absorption spectroscopy to be a single exponential to within the experimental uncertainty at all fields. The decay time increases from 13 ns at zero field to 17 ns at 1 kG, and decreases to 9 ns at 50 kG. The orientation averaged quantum yield of formation of the molecular triplet of the primary electron donor, 3P, drops to 47% of its zero-field value at 1 kG and rises to 126% at 50 kG. Combined analysis of these data gives a singlet radical-pair decay rate constant of 5 · 107s?1, a lower limit for the triplet radical-pair decay rate constant of 1 · 108s?1 and a lower limit for the quantum yield of radical-pair decay by the triplet channel of 38% at zero field. The upper limit of the quantum yield of 3P formation at zero field is measured to be 32%. In order to explain this apparent discrepancy, decay of the radical pair by the triplet channel must lead to some rapid ground state formation as well as some 3P formation. It is proposed that the triplet radical pair decays to a triplet charge-transfer state which is strongly coupled to the ground state by spin-orbit interactions. Several possibilities for this charge-transfer state are discussed.  相似文献   
87.
The ratio of Photosystem (PS) II to PS I electron-transport capacity in spinach chloroplasts was compared from reaction-center and steady-state rate measurements. The reaction-center electron-transport capacity was based upon both the relative concentrations of the PS IIα, PS IIβ and PS I centers, and the number of chlorophyll molecules associated with each type of center. The reaction-center ratio of total PS II to PS I electron-transport capacity was about 1.8:1. Steady-state electron-transport capacity data were obtained from the rate of light-induced absorbance-change measurements in the presence of ferredoxin-NADP+, potassium ferricyanide and 2,5-dimethylbenzoquinone (DMQ). A new method was developed for determining the partition of reduced DMQ between the thylakoid membrane and the surrounding aqueous phase. The ratio of membrane-bound to aqueous DMQH2 was experimentally determined to be 1.3:1. When used at low concentrations (200 μM), potassium ferricyanide is shown to be strictly a PS I electron acceptor. At concentrations higher than 200 μM, ferricyanide intercepted electrons from the reducing side of PS II as well. The experimental rates of electron flow through PS II and PS I defined a PS II/PS I electron-transport capacity ratio of 1.6:1.  相似文献   
88.
[14C]Cinnamate was taken up very rapidly by cultured spinach cells and completely incorporated into low-MW conjugates within 20 min. The 14C-labelled products were similar whether the [14C]cinnamate was supplied continuously over a period of hours via a peristaltic pump or instantaneously. Radioactivity was slowly recruited from the low-MW pool into aromatic components of the cell-wall fraction. Saponification of the radioactive wall fraction yielded, in addition to radioactive ferulate and p-coumarate, large amounts of ethyl acetate-soluble radioactive material with the properties of oxidatively coupled phenols. The coupled material was associated with the most highly ‘Driselase’-resistant fractions of the cell wall. In contrast, ‘Driselase’ released most of the wall's ferulate and p-coumarate on disaccharide fragments. It is suggested that the oxidatively coupled phenols are formed from simpler phenols by peroxidase and that they cross-link the polysaccharides to which they are attached, making these polysaccharides relatively ‘Driselase’-resistant.  相似文献   
89.
The growth of the primary leaves of Phaseolus vulgaris L. was enhanced greatly by decapitation of the rest of the shoot. This increased growth was manifested by an increase in leaf area, leaf weight, and in a higher synthesis of chlorophyll and soluble proteins. Within the roots and stems decapitation resulted in a detectable increase in the endogenous cytokinins within 2 days after the surgical treatment. In the primary leaves increased cytokinin levels were only detected after 16 days. At this time most of the recorded activity co-chromatographed with the cytokinin glucosides. When plants which were decapitated were left under normal growing conditions for 16 days and then transferred to continuous darkness for 8 days the senescence of the primary leaves of the decapitated plants, in which the cytokinins had increased, was delayed significantly when compared with that of the primary leaves of the intact plants. the significance of these findings is discussed.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号